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Preface

Parallel hardware has been ubiquitous for some time now. It’s difficult to find a lap-
top, desktop, or server that doesn’t use a multicore processor. Beowulf clusters are
nearly as common today as high-powered workstations were during the 1990s, and
cloud computing could make distributed-memory systems as accessible as desktops.
In spite of this, most computer science majors graduate with little or no experience in
parallel programming. Many colleges and universities offer upper-division elective
courses in parallel computing, but since most computer science majors have to take
numerous required courses, many graduate without ever writing a multithreaded or
multiprocess program.

It seems clear that this state of affairs needs to change. Although many programs
can obtain satisfactory performance on a single core, computer scientists should be
made aware of the potentially vast performance improvements that can be obtained
with parallelism, and they should be able to exploit this potential when the need
arises.

An Introduction to Parallel Programming was written to partially address this
problem. It provides an introduction to writing parallel programs using MPI,
Pthreads, and OpenMP—three of the most widely used application programming
interfaces (APIs) for parallel programming. The intended audience is students and
professionals who need to write parallel programs. The prerequisites are mini-
mal: a college-level course in mathematics and the ability to write serial programs
in C. They are minimal because we believe that students should be able to start
programming parallel systems as early as possible.

At the University of San Francisco, computer science students can fulfill a
requirement for the major by taking the course, on which this text is based, immedi-
ately after taking the “Introduction to Computer Science I” course that most majors
take in the first semester of their freshman year. We’ve been offering this course
in parallel computing for six years now, and it has been our experience that there
really is no reason for students to defer writing parallel programs until their junior
or senior year. To the contrary, the course is popular, and students have found that
using concurrency in other courses is much easier after having taken the Introduction
course.

If second-semester freshmen can learn to write parallel programs by taking a
class, then motivated computing professionals should be able to learn to write paral-
lel programs through self-study. We hope this book will prove to be a useful resource
for them.

About This Book
As we noted earlier, the main purpose of the book is to teach parallel programming in
MPI, Pthreads, and OpenMP to an audience with a limited background in computer
science and no previous experience with parallelism. We also wanted to make it as

xv
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flexible as possible so that readers who have no interest in learning one or two of
the APIs can still read the remaining material with little effort. Thus, the chapters on
the three APIs are largely independent of each other: they can be read in any order,
and one or two of these chapters can be bypass. This independence has a cost: It
was necessary to repeat some of the material in these chapters. Of course, repeated
material can be simply scanned or skipped.

Readers with no prior experience with parallel computing should read Chapter 1
first. It attempts to provide a relatively nontechnical explanation of why parallel sys-
tems have come to dominate the computer landscape. The chapter also provides a
short introduction to parallel systems and parallel programming.

Chapter 2 provides some technical background in computer hardware and soft-
ware. Much of the material on hardware can be scanned before proceeding to the
API chapters. Chapters 3, 4, and 5 are the introductions to programming with MPI,
Pthreads, and OpenMP, respectively.

In Chapter 6 we develop two longer programs: a parallel n-body solver and a
parallel tree search. Both programs are developed using all three APIs. Chapter 7
provides a brief list of pointers to additional information on various aspects of parallel
computing.

We use the C programming language for developing our programs because all
three APIs have C-language interfaces, and, since C is such a small language, it is
a relatively easy language to learn—especially for C++ and Java programmers, since
they are already familiar with C’s control structures.

Classroom Use
This text grew out of a lower-division undergraduate course at the University of San
Francisco. The course fulfills a requirement for the computer science major, and it
also fulfills a prerequisite for the undergraduate operating systems course. The only
prerequisites for the course are either a grade of “B” or better in a one-semester
introduction to computer science or a “C” or better in a two-semester introduction
to computer science. The course begins with a four-week introduction to C program-
ming. Since most students have already written Java programs, the bulk of what is
covered is devoted to the use pointers in C.1 The remainder of the course provides
introductions to programming in MPI, Pthreads, and OpenMP.

We cover most of the material in Chapters 1, 3, 4, and 5, and parts of the material
in Chapters 2 and 6. The background in Chapter 2 is introduced as the need arises.
For example, before discussing cache coherence issues in OpenMP (Chapter 5), we
cover the material on caches in Chapter 2.

The coursework consists of weekly homework assignments, five programming
assignments, a couple of midterms, and a final exam. The homework usually involves

1Interestingly, a number of students have said that they found the use of C pointers more difficult than
MPI programming.
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writing a very short program or making a small modification to an existing program.
Their purpose is to insure that students stay current with the course work and to give
them hands-on experience with the ideas introduced in class. It seems likely that the
existence of the assignments has been one of the principle reasons for the course’s
success. Most of the exercises in the text are suitable for these brief assignments.

The programming assignments are larger than the programs written for home-
work, but we typically give students a good deal of guidance: We’ll frequently
include pseudocode in the assignment and discuss some of the more difficult aspects
in class. This extra guidance is often crucial: It’s not difficult to give programming
assignments that will take far too long for the students to complete. The results of the
midterms and finals, and the enthusiastic reports of the professor who teaches oper-
ating systems, suggest that the course is actually very successful in teaching students
how to write parallel programs.

For more advanced courses in parallel computing, the text and its online support
materials can serve as a supplement so that much of the information on the syntax
and semantics of the three APIs can be assigned as outside reading. The text can also
be used as a supplement for project-based courses and courses outside of computer
science that make use of parallel computation.

Support Materials
The book’s website is located at http://www.mkp.com/pacheco. It will include
errata and links to sites with related materials. Faculty will be able to download
complete lecture notes, figures from the text, and solutions to the exercises and the
programming assignments. All users will be able to download the longer programs
discussed in the text.

We would greatly appreciate readers letting us know of any errors they find.
Please send an email to peter@usfca.edu if you do find a mistake.
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CHAPTER

1Why Parallel Computing?

From 1986 to 2002 the performance of microprocessors increased, on average, 50%
per year [27]. This unprecedented increase meant that users and software develop-
ers could often simply wait for the next generation of microprocessors in order to
obtain increased performance from an application program. Since 2002, however,
single-processor performance improvement has slowed to about 20% per year. This
difference is dramatic: at 50% per year, performance will increase by almost a factor
of 60 in 10 years, while at 20%, it will only increase by about a factor of 6.

Furthermore, this difference in performance increase has been associated with
a dramatic change in processor design. By 2005, most of the major manufacturers
of microprocessors had decided that the road to rapidly increasing performance lay
in the direction of parallelism. Rather than trying to continue to develop ever-faster
monolithic processors, manufacturers started putting multiple complete processors on
a single integrated circuit.

This change has a very important consequence for software developers: simply
adding more processors will not magically improve the performance of the vast
majority of serial programs, that is, programs that were written to run on a single
processor. Such programs are unaware of the existence of multiple processors, and
the performance of such a program on a system with multiple processors will be
effectively the same as its performance on a single processor of the multiprocessor
system.

All of this raises a number of questions:

1. Why do we care? Aren’t single processor systems fast enough? After all, 20% per
year is still a pretty significant performance improvement.

2. Why can’t microprocessor manufacturers continue to develop much faster sin-
gle processor systems? Why build parallel systems? Why build systems with
multiple processors?

3. Why can’t we write programs that will automatically convert serial programs
into parallel programs, that is, programs that take advantage of the presence
of multiple processors?

Let’s take a brief look at each of these questions. Keep in mind, though, that some
of the answers aren’t carved in stone. For example, 20% per year may be more than
adequate for many applications.

Copyright c© 2011 Elsevier Inc. All rights reserved.
1An Introduction to Parallel Programming. DOI: 10.1016/B978-0-12-374260-5.00001-4



2 CHAPTER 1 Why Parallel Computing?

1.1 WHY WE NEED EVER-INCREASING PERFORMANCE
The vast increases in computational power that we’ve been enjoying for decades
now have been at the heart of many of the most dramatic advances in fields as
diverse as science, the Internet, and entertainment. For example, decoding the human
genome, ever more accurate medical imaging, astonishingly fast and accurate Web
searches, and ever more realistic computer games would all have been impossi-
ble without these increases. Indeed, more recent increases in computational power
would have been difficult, if not impossible, without earlier increases. But we can
never rest on our laurels. As our computational power increases, the number of prob-
lems that we can seriously consider solving also increases. The following are a few
examples:

. Climate modeling. In order to better understand climate change, we need far more
accurate computer models, models that include interactions between the atmo-
sphere, the oceans, solid land, and the ice caps at the poles. We also need to be
able to make detailed studies of how various interventions might affect the global
climate.. Protein folding. It’s believed that misfolded proteins may be involved in dis-
eases such as Huntington’s, Parkinson’s, and Alzheimer’s, but our ability to study
configurations of complex molecules such as proteins is severely limited by our
current computational power.. Drug discovery. There are many ways in which increased computational power
can be used in research into new medical treatments. For example, there are many
drugs that are effective in treating a relatively small fraction of those suffering
from some disease. It’s possible that we can devise alternative treatments by care-
ful analysis of the genomes of the individuals for whom the known treatment
is ineffective. This, however, will involve extensive computational analysis of
genomes.. Energy research. Increased computational power will make it possible to program
much more detailed models of technologies such as wind turbines, solar cells, and
batteries. These programs may provide the information needed to construct far
more efficient clean energy sources.. Data analysis. We generate tremendous amounts of data. By some estimates, the
quantity of data stored worldwide doubles every two years [28], but the vast
majority of it is largely useless unless it’s analyzed. As an example, knowing the
sequence of nucleotides in human DNA is, by itself, of little use. Understand-
ing how this sequence affects development and how it can cause disease requires
extensive analysis. In addition to genomics, vast quantities of data are generated
by particle colliders such as the Large Hadron Collider at CERN, medical imaging,
astronomical research, and Web search engines—to name a few.

These and a host of other problems won’t be solved without vast increases in
computational power.



1.3 Why We Need to Write Parallel Programs 3

1.2 WHY WE’RE BUILDING PARALLEL SYSTEMS
Much of the tremendous increase in single processor performance has been driven
by the ever-increasing density of transistors—the electronic switches—on integrated
circuits. As the size of transistors decreases, their speed can be increased, and the
overall speed of the integrated circuit can be increased. However, as the speed of
transistors increases, their power consumption also increases. Most of this power is
dissipated as heat, and when an integrated circuit gets too hot, it becomes unreli-
able. In the first decade of the twenty-first century, air-cooled integrated circuits are
reaching the limits of their ability to dissipate heat [26].

Therefore, it is becoming impossible to continue to increase the speed of inte-
grated circuits. However, the increase in transistor density can continue—at least for
a while. Also, given the potential of computing to improve our existence, there is an
almost moral imperative to continue to increase computational power. Finally, if the
integrated circuit industry doesn’t continue to bring out new and better products, it
will effectively cease to exist.

How then, can we exploit the continuing increase in transistor density? The
answer is parallelism. Rather than building ever-faster, more complex, monolithic
processors, the industry has decided to put multiple, relatively simple, complete
processors on a single chip. Such integrated circuits are called multicore proces-
sors, and core has become synonymous with central processing unit, or CPU. In
this setting a conventional processor with one CPU is often called a single-core
system.

1.3 WHY WE NEED TO WRITE PARALLEL PROGRAMS
Most programs that have been written for conventional, single-core systems cannot
exploit the presence of multiple cores. We can run multiple instances of a program
on a multicore system, but this is often of little help. For example, being able to run
multiple instances of our favorite game program isn’t really what we want—we want
the program to run faster with more realistic graphics. In order to do this, we need to
either rewrite our serial programs so that they’re parallel, so that they can make use of
multiple cores, or write translation programs, that is, programs that will automatically
convert serial programs into parallel programs. The bad news is that researchers have
had very limited success writing programs that convert serial programs in languages
such as C and C++ into parallel programs.

This isn’t terribly surprising. While we can write programs that recognize com-
mon constructs in serial programs, and automatically translate these constructs into
efficient parallel constructs, the sequence of parallel constructs may be terribly inef-
ficient. For example, we can view the multiplication of two n× n matrices as a
sequence of dot products, but parallelizing a matrix multiplication as a sequence of
parallel dot products is likely to be very slow on many systems.
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An efficient parallel implementation of a serial program may not be obtained by
finding efficient parallelizations of each of its steps. Rather, the best parallelization
may be obtained by stepping back and devising an entirely new algorithm.

As an example, suppose that we need to compute n values and add them together.
We know that this can be done with the following serial code:

sum = 0;
for (i = 0; i < n; i++) {

x = Compute next value(. . .);
sum += x;

}

Now suppose we also have p cores and p is much smaller than n. Then each core can
form a partial sum of approximately n/p values:

my sum = 0;
my first i = . . . ;
my last i = . . . ;
for (my i = my first i; my i < my last i; my i++) {

my x = Compute next value(. . .);
my sum += my x;

}

Here the prefix my indicates that each core is using its own, private variables, and
each core can execute this block of code independently of the other cores.

After each core completes execution of this code, its variable my sum will store
the sum of the values computed by its calls to Compute next value. For example,
if there are eight cores, n= 24, and the 24 calls to Compute next value return the
values

1,4,3, 9,2,8, 5,1,1, 6,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9,

then the values stored in my sum might be

Core 0 1 2 3 4 5 6 7

my sum 8 19 7 15 7 13 12 14

Here we’re assuming the cores are identified by nonnegative integers in the range
0,1, . . . ,p− 1, where p is the number of cores.

When the cores are done computing their values of my sum, they can form a
global sum by sending their results to a designated “master” core, which can add
their results:

if (I’m the master core) {
sum = my x;
for each core other than myself {

receive value from core;
sum += value;

}
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} else {
send my x to the master;

}

In our example, if the master core is core 0, it would add the values 8+ 19+ 7+
15+ 7+ 13+ 12+ 14= 95.

But you can probably see a better way to do this—especially if the number of
cores is large. Instead of making the master core do all the work of computing the
final sum, we can pair the cores so that while core 0 adds in the result of core 1, core
2 can add in the result of core 3, core 4 can add in the result of core 5 and so on. Then
we can repeat the process with only the even-ranked cores: 0 adds in the result of 2,
4 adds in the result of 6, and so on. Now cores divisible by 4 repeat the process, and
so on. See Figure 1.1. The circles contain the current value of each core’s sum, and
the lines with arrows indicate that one core is sending its sum to another core. The
plus signs indicate that a core is receiving a sum from another core and adding the
received sum into its own sum.

For both “global” sums, the master core (core 0) does more work than any other
core, and the length of time it takes the program to complete the final sum should
be the length of time it takes for the master to complete. However, with eight cores,
the master will carry out seven receives and adds using the first method, while with
the second method it will only carry out three. So the second method results in an
improvement of more than a factor of two. The difference becomes much more

Time

Cores

8

27

719 12

26

15 13 14

49

7

20

46

95

22

0

+ + + +

++

+

1 2 3 4 5 6 7

FIGURE 1.1

Multiple cores forming a global sum
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dramatic with large numbers of cores. With 1000 cores, the first method will require
999 receives and adds, while the second will only require 10, an improvement of
almost a factor of 100!

The first global sum is a fairly obvious generalization of the serial global sum:
divide the work of adding among the cores, and after each core has computed its part
of the sum, the master core simply repeats the basic serial addition—if there are p
cores, then it needs to add p values. The second global sum, on the other hand, bears
little relation to the original serial addition.

The point here is that it’s unlikely that a translation program would “discover”
the second global sum. Rather there would more likely be a predefined efficient
global sum that the translation program would have access to. It could “recog-
nize” the original serial loop and replace it with a precoded, efficient, parallel
global sum.

We might expect that software could be written so that a large number of common
serial constructs could be recognized and efficiently parallelized, that is, modified
so that they can use multiple cores. However, as we apply this principle to ever
more complex serial programs, it becomes more and more difficult to recognize the
construct, and it becomes less and less likely that we’ll have a precoded, efficient
parallelization.

Thus, we cannot simply continue to write serial programs, we must write parallel
programs, programs that exploit the power of multiple processors.

1.4 HOW DO WE WRITE PARALLEL PROGRAMS?
There are a number of possible answers to this question, but most of them depend
on the basic idea of partitioning the work to be done among the cores. There are two
widely used approaches: task-parallelism and data-parallelism. In task-parallelism,
we partition the various tasks carried out in solving the problem among the cores. In
data-parallelism, we partition the data used in solving the problem among the cores,
and each core carries out more or less similar operations on its part of the data.

As an example, suppose that Prof P has to teach a section of “Survey of English
Literature.” Also suppose that Prof P has one hundred students in her section, so
she’s been assigned four teaching assistants (TAs): Mr A, Ms B, Mr C, and Ms D.
At last the semester is over, and Prof P makes up a final exam that consists of five
questions. In order to grade the exam, she and her TAs might consider the following
two options: each of them can grade all one hundred responses to one of the questions;
say P grades question 1, A grades question 2, and so on. Alternatively, they can divide
the one hundred exams into five piles of twenty exams each, and each of them can
grade all the papers in one of the piles; P grades the papers in the first pile, A grades
the papers in the second pile, and so on.

In both approaches the “cores” are the professor and her TAs. The first approach
might be considered an example of task-parallelism. There are five tasks to be carried
out: grading the first question, grading the second question, and so on. Presumably,
the graders will be looking for different information in question 1, which is about
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Shakespeare, from the information in question 2, which is about Milton, and so on.
So the professor and her TAs will be “executing different instructions.”

On the other hand, the second approach might be considered an example of data-
parallelism. The “data” are the students’ papers, which are divided among the cores,
and each core applies more or less the same grading instructions to each paper.

The first part of the global sum example in Section 1.3 would probably be
considered an example of data-parallelism. The data are the values computed by
Compute next value, and each core carries out roughly the same operations on its
assigned elements: it computes the required values by calling Compute next value
and adds them together. The second part of the first global sum example might be
considered an example of task-parallelism. There are two tasks: receiving and adding
the cores’ partial sums, which is carried out by the master core, and giving the partial
sum to the master core, which is carried out by the other cores.

When the cores can work independently, writing a parallel program is much the
same as writing a serial program. Things get a good deal more complex when the
cores need to coordinate their work. In the second global sum example, although
the tree structure in the diagram is very easy to understand, writing the actual code
is relatively complex. See Exercises 1.3 and 1.4. Unfortunately, it’s much more
common for the cores to need coordination.

In both global sum examples, the coordination involves communication: one or
more cores send their current partial sums to another core. The global sum examples
should also involve coordination through load balancing: even though we didn’t
give explicit formulas, it’s clear that we want the cores all to be assigned roughly the
same number of values to compute. If, for example, one core has to compute most of
the values, then the other cores will finish much sooner than the heavily loaded core,
and their computational power will be wasted.

A third type of coordination is synchronization. As an example, suppose that
instead of computing the values to be added, the values are read from stdin. Say x
is an array that is read in by the master core:

if (I’m the master core)
for (my i = 0; my i < n; my i++)

scanf("%lf", &x[my i]);

In most systems the cores are not automatically synchronized. Rather, each core
works at its own pace. In this case, the problem is that we don’t want the other cores
to race ahead and start computing their partial sums before the master is done ini-
tializing x and making it available to the other cores. That is, the cores need to wait
before starting execution of the code:

for (my i = my first i; my i < my last i; my i++)
my sum += x[my i];

We need to add in a point of synchronization between the initialization of x and the
computation of the partial sums:

Synchronize cores();



8 CHAPTER 1 Why Parallel Computing?

The idea here is that each core will wait in the function Synchronize cores until all
the cores have entered the function—in particular, until the master core has entered
this function.

Currently, the most powerful parallel programs are written using explicit parallel
constructs, that is, they are written using extensions to languages such as C and C++.
These programs include explicit instructions for parallelism: core 0 executes task 0,
core 1 executes task 1, . . . , all cores synchronize, . . . , and so on, so such programs are
often extremely complex. Furthermore, the complexity of modern cores often makes
it necessary to use considerable care in writing the code that will be executed by a
single core.

There are other options for writing parallel programs—for example, higher
level languages—but they tend to sacrifice performance in order to make program
development somewhat easier.

1.5 WHAT WE’LL BE DOING
We’ll be focusing on learning to write programs that are explicitly parallel. Our pur-
pose is to learn the basics of programming parallel computers using the C language
and three different extensions to C: the Message-Passing Interface or MPI, POSIX
threads or Pthreads, and OpenMP. MPI and Pthreads are libraries of type defini-
tions, functions, and macros that can be used in C programs. OpenMP consists of a
library and some modifications to the C compiler.

You may well wonder why we’re learning three different extensions to C instead
of just one. The answer has to do with both the extensions and parallel systems.
There are two main types of parallel systems that we’ll be focusing on: shared-
memory systems and distributed-memory systems. In a shared-memory system,
the cores can share access to the computer’s memory; in principle, each core can read
and write each memory location. In a shared-memory system, we can coordinate the
cores by having them examine and update shared-memory locations. In a distributed-
memory system, on the other hand, each core has its own, private memory, and the
cores must communicate explicitly by doing something like sending messages across
a network. Figure 1.2 shows a schematic of the two types of systems. Pthreads and
OpenMP were designed for programming shared-memory systems. They provide
mechanisms for accessing shared-memory locations. MPI, on the other hand, was
designed for programming distributed-memory systems. It provides mechanisms for
sending messages.

But why two extensions for shared-memory? OpenMP is a relatively high-level
extension to C. For example, it can “parallelize” our addition loop

sum = 0;
for (i = 0; i < n; i++) {

x = Compute next value(. . .);
sum += x;

}
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(a) A shared-memory system and (b) a distributed-memory system

with a single directive, while Pthreads requires that we do something similar to our
example. On the other hand, Pthreads provides some coordination constructs that are
unavailable in OpenMP. OpenMP allows us to parallelize many programs with rela-
tive ease, while Pthreads provides us with some constructs that make other programs
easier to parallelize.

1.6 CONCURRENT, PARALLEL, DISTRIBUTED
If you look at some other books on parallel computing or you search the Web
for information on parallel computing, you’re likely to also run across the terms
concurrent computing and distributed computing. Although there isn’t complete
agreement on the distinction between the terms parallel, distributed, and concurrent,
many authors make the following distinctions:

. In concurrent computing, a program is one in which multiple tasks can be in progress
at any instant [4].. In parallel computing, a program is one in which multiple tasks cooperate closely
to solve a problem.. In distributed computing, a program may need to cooperate with other programs
to solve a problem.

So parallel and distributed programs are concurrent, but a program such as a mul-
titasking operating system is also concurrent, even when it is run on a machine with
only one core, since multiple tasks can be in progress at any instant. There isn’t a
clear-cut distinction between parallel and distributed programs, but a parallel program
usually runs multiple tasks simultaneously on cores that are physically close to each
other and that either share the same memory or are connected by a very high-speed
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network. On the other hand, distributed programs tend to be more “loosely coupled.”
The tasks may be executed by multiple computers that are separated by large dis-
tances, and the tasks themselves are often executed by programs that were created
independently. As examples, our two concurrent addition programs would be con-
sidered parallel by most authors, while a Web search program would be considered
distributed.

But beware, there isn’t general agreement on these terms. For example, many
authors consider shared-memory programs to be “parallel” and distributed-memory
programs to be “distributed.” As our title suggests, we’ll be interested in par-
allel programs—programs in which closely coupled tasks cooperate to solve a
problem.

1.7 THE REST OF THE BOOK
How can we use this book to help us write parallel programs?

First, when you’re interested in high-performance, whether you’re writing serial
or parallel programs, you need to know a little bit about the systems you’re working
with—both hardware and software. In Chapter 2, we’ll give an overview of parallel
hardware and software. In order to understand this discussion, it will be necessary to
review some information on serial hardware and software. Much of the material in
Chapter 2 won’t be needed when we’re getting started, so you might want to skim
some of this material, and refer back to it occasionally when you’re reading later
chapters.

The heart of the book is contained in Chapters 3 through 6. Chapters 3, 4, and 5
provide a very elementary introduction to programming parallel systems using C and
MPI, Pthreads, and OpenMP, respectively. The only prerequisite for reading these
chapters is a knowledge of C programming. We’ve tried to make these chapters inde-
pendent of each other, and you should be able to read them in any order. However, in
order to make them independent, we did find it necessary to repeat some material. So
if you’ve read one of the three chapters, and you go on to read another, be prepared
to skim over some of the material in the new chapter.

Chapter 6 puts together all we’ve learned in the preceding chapters, and devel-
ops two fairly large programs in both a shared- and a distributed-memory setting.
However, it should be possible to read much of this even if you’ve only read one of
Chapters 3, 4, or 5. The last chapter, Chapter 7, provides a few suggestions for further
study on parallel programming.

1.8 A WORD OF WARNING
Before proceeding, a word of warning. It may be tempting to write parallel pro-
grams “by the seat of your pants,” without taking the trouble to carefully design and
incrementally develop your program. This will almost certainly be a mistake. Every
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parallel program contains at least one serial program. Since we almost always need to
coordinate the actions of multiple cores, writing parallel programs is almost always
more complex than writing a serial program that solves the same problem. In fact,
it is often far more complex. All the rules about careful design and development are
usually far more important for the writing of parallel programs than they are for serial
programs.

1.9 TYPOGRAPHICAL CONVENTIONS
We’ll make use of the following typefaces in the text:

. Program text, displayed or within running text, will use the following typefaces:

/∗ This is a short program ∗/
#include <stdio.h>

int main(int argc, char∗ argv[]) {
printf("hello, world\n");

return 0;
}

. Definitions are given in the body of the text, and the term being defined is printed
in boldface type: A parallel program can make use of multiple cores.. When we need to refer to the environment in which a program is being developed,
we’ll assume that we’re using a UNIX shell, and we’ll use a $ to indicate the shell
prompt:

$ gcc −g −Wall −o hello hello.c

. We’ll specify the syntax of function calls with fixed argument lists by including
a sample argument list. For example, the integer absolute value function, abs, in
stdlib might have its syntax specified with

int abs(int x); /∗ Returns absolute value of int x ∗/

For more complicated syntax, we’ll enclose required content in angle brackets <>

and optional content in square brackets []. For example, the C if statement might
have its syntax specified as follows:

if ( <expression> )
<statement1>

[else
<statement2>]

This says that the if statement must include an expression enclosed in parentheses,
and the right parenthesis must be followed by a statement. This statement can be
followed by an optional else clause. If the else clause is present, it must include
a second statement.
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1.10 SUMMARY
For many years we’ve enjoyed the fruits of ever faster processors. However, because
of physical limitations the rate of performance improvement in conventional pro-
cessors is decreasing. In order to increase the power of processors, chipmakers
have turned to multicore integrated circuits, that is, integrated circuits with multiple
conventional processors on a single chip.

Ordinary serial programs, which are programs written for a conventional single-
core processor, usually cannot exploit the presence of multiple cores, and it’s unlikely
that translation programs will be able to shoulder all the work of parallelizing serial
programs, meaning converting them into parallel programs, which can make use of
multiple cores. As software developers, we need to learn to write parallel programs.

When we write parallel programs, we usually need to coordinate the work of
the cores. This can involve communication among the cores, load balancing, and
synchronization of the cores.

In this book we’ll be learning to program parallel systems so that we can
maximize their performance. We’ll be using the C language with either MPI,
Pthreads, or OpenMP. MPI is used for programming distributed-memory systems,
and Pthreads and OpenMP are used for programming shared-memory systems. In
distributed-memory systems, the cores have their own private memories, while in
shared-memory systems, it’s possible, in principle, for each core to access each
memory location.

Concurrent programs can have multiple tasks in progress at any instant. Paral-
lel and distributed programs usually have tasks that execute simultaneously. There
isn’t a hard and fast distinction between parallel and distributed, although in parallel
programs, the tasks are usually more tightly coupled.

Parallel programs are usually very complex. So it’s even more important to use
good program development techniques with parallel programs.

1.11 EXERCISES

1.1 Devise formulas for the functions that calculate my first i and my last i in
the global sum example. Remember that each core should be assigned roughly
the same number of elements of computations in the loop. Hint: First consider
the case when n is evenly divisible by p.

1.2 We’ve implicitly assumed that each call to Compute next value requires
roughly the same amount of work as the other calls. How would you change
your answer to the preceding question if call i= k requires k+ 1 times as much
work as the call with i= 0? So if the first call (i= 0) requires 2 milliseconds,
the second call (i= 1) requires 4, the third (i= 2) requires 6, and so on.

1.3 Try to write pseudo-code for the tree-structured global sum illustrated in
Figure 1.1. Assume the number of cores is a power of two (1, 2, 4, 8, . . . ).
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Hints: Use a variable divisor to determine whether a core should send its
sum or receive and add. The divisor should start with the value 2 and be
doubled after each iteration. Also use a variable core difference to deter-
mine which core should be partnered with the current core. It should start
with the value 1 and also be doubled after each iteration. For example, in
the first iteration 0 % divisor = 0 and 1 % divisor = 1, so 0 receives and
adds, while 1 sends. Also in the first iteration 0 + core difference = 1 and
1 − core difference = 0, so 0 and 1 are paired in the first iteration.

1.4 As an alternative to the approach outlined in the preceding problem, we can use
C’s bitwise operators to implement the tree-structured global sum. In order to
see how this works, it helps to write down the binary (base 2) representation of
each of the core ranks, and note the pairings during each stage:

Stages

Cores 1 2 3

010 = 0002 110 = 0012 210 = 0102 410 = 1002

110 = 0012 010 = 0002 × ×

210 = 0102 310 = 0112 010 = 0002 ×

310 = 0112 210 = 0102 × ×

410 = 1002 510 = 1012 610 = 1102 010 = 0002

510 = 1012 410 = 1002 × ×

610 = 1102 710 = 1112 410 = 1002 ×

710 = 1112 610 = 1102 × ×

From the table we see that during the first stage each core is paired with the
core whose rank differs in the rightmost or first bit. During the second stage
cores that continue are paired with the core whose rank differs in the second
bit, and during the third stage cores are paired with the core whose rank differs
in the third bit. Thus, if we have a binary value bitmask that is 0012 for the
first stage, 0102 for the second, and 1002 for the third, we can get the rank of
the core we’re paired with by “inverting” the bit in our rank that is nonzero in
bitmask. This can be done using the bitwise exclusive or ∧ operator.

Implement this algorithm in pseudo-code using the bitwise exclusive or and
the left-shift operator.

1.5 What happens if your pseudo-code in Exercise 1.3 or Exercise 1.4 is run when
the number of cores is not a power of two (e.g., 3, 5, 6, 7)? Can you modify the
pseudo-code so that it will work correctly regardless of the number of cores?

1.6 Derive formulas for the number of receives and additions that core 0 carries out
using
a. the original pseudo-code for a global sum, and
b. the tree-structured global sum.
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Make a table showing the numbers of receives and additions carried out by core
0 when the two sums are used with 2,4,8, . . . ,1024 cores.

1.7 The first part of the global sum example—when each core adds its assigned
computed values—is usually considered to be an example of data-parallelism,
while the second part of the first global sum—when the cores send their par-
tial sums to the master core, which adds them—could be considered to be an
example of task-parallelism. What about the second part of the second global
sum—when the cores use a tree structure to add their partial sums? Is this an
example of data- or task-parallelism? Why?

1.8 Suppose the faculty are going to have a party for the students in the depart-
ment.
a. Identify tasks that can be assigned to the faculty members that will allow

them to use task-parallelism when they prepare for the party. Work out a
schedule that shows when the various tasks can be performed.

b. We might hope that one of the tasks in the preceding part is cleaning the
house where the party will be held. How can we use data-parallelism to
partition the work of cleaning the house among the faculty?

c. Use a combination of task- and data-parallelism to prepare for the party. (If
there’s too much work for the faculty, you can use TAs to pick up the slack.)

1.9 Write an essay describing a research problem in your major that would benefit
from the use of parallel computing. Provide a rough outline of how parallelism
would be used. Would you use task- or data-parallelism?



CHAPTER

2Parallel Hardware and
Parallel Software

It’s perfectly feasible for specialists in disciplines other than computer science and
computer engineering to write parallel programs. However, in order to write effi-
cient parallel programs, we do need some knowledge of the underlying hardware and
system software. It’s also very useful to have some knowledge of different types of
parallel software, so in this chapter we’ll take a brief look at a few topics in hardware
and software. We’ll also take a brief look at evaluating program performance and a
method for developing parallel programs. We’ll close with a discussion of what kind
of environment we might expect to be working in, and a few rules and assumptions
we’ll make in the rest of the book.

This is a long, broad chapter, so it may be a good idea to skim through some of the
sections on a first reading so that you have a good idea of what’s in the chapter. Then,
when a concept or term in a later chapter isn’t quite clear, it may be helpful to refer
back to this chapter. In particular, you may want to skim over most of the material
in “Modifications to the von Neumann Model,” except “The Basics of Caching.”
Also, in the “Parallel Hardware” section, you can safely skim the material on “SIMD
Systems” and “Interconnection Networks.”

2.1 SOME BACKGROUND
Parallel hardware and software have grown out of conventional serial hardware and
software: hardware and software that runs (more or less) a single job at a time. So in
order to better understand the current state of parallel systems, let’s begin with a brief
look at a few aspects of serial systems.

2.1.1 The von Neumann architecture
The “classical” von Neumann architecture consists of main memory, a central-
processing unit (CPU) or processor or core, and an interconnection between the
memory and the CPU. Main memory consists of a collection of locations, each of
which is capable of storing both instructions and data. Every location consists of an
address, which is used to access the location and the contents of the location—the
instructions or data stored in the location.

Copyright c© 2011 Elsevier Inc. All rights reserved.
15An Introduction to Parallel Programming. DOI: 10.1016/B978-0-12-374260-5.00002-6
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The central processing unit is divided into a control unit and an arithmetic and
logic unit (ALU). The control unit is responsible for deciding which instructions in
a program should be executed, and the ALU is responsible for executing the actual
instructions. Data in the CPU and information about the state of an executing program
are stored in special, very fast storage called registers. The control unit has a special
register called the program counter. It stores the address of the next instruction to
be executed.

Instructions and data are transferred between the CPU and memory via the inter-
connect. This has traditionally been a bus, which consists of a collection of parallel
wires and some hardware controlling access to the wires. A von Neumann machine
executes a single instruction at a time, and each instruction operates on only a few
pieces of data. See Figure 2.1.

When data or instructions are transferred from memory to the CPU, we some-
times say the data or instructions are fetched or read from memory. When data are
transferred from the CPU to memory, we sometimes say the data are written to mem-
ory or stored. The separation of memory and CPU is often called the von Neumann
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Main memory

Contents

registers

ControlALU

CPU

FIGURE 2.1

The von Neumann architecture
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bottleneck, since the interconnect determines the rate at which instructions and data
can be accessed. The potentially vast quantity of data and instructions needed to run a
program is effectively isolated from the CPU. In 2010 CPUs are capable of executing
instructions more than one hundred times faster than they can fetch items from main
memory.

In order to better understand this problem, imagine that a large company has a
single factory (the CPU) in one town and a single warehouse (main memory) in
another. Further imagine that there is a single two-lane road joining the warehouse
and the factory. All the raw materials used in manufacturing the products are stored
in the warehouse. Also, all the finished products are stored in the warehouse before
being shipped to customers. If the rate at which products can be manufactured is much
larger than the rate at which raw materials and finished products can be transported,
then it’s likely that there will be a huge traffic jam on the road, and the employees and
machinery in the factory will either be idle for extended periods or they will have to
reduce the rate at which they produce finished products.

In order to address the von Neumann bottleneck, and, more generally, improve
CPU performance, computer engineers and computer scientists have experimented
with many modifications to the basic von Neumann architecture. Before discussing
some of these modifications, let’s first take a moment to discuss some aspects of the
software that are used in both von Neumann systems and more modern systems.

2.1.2 Processes, multitasking, and threads
Recall that the operating system, or OS, is a major piece of software whose purpose
is to manage hardware and software resources on a computer. It determines which
programs can run and when they can run. It also controls the allocation of memory
to running programs and access to peripheral devices such as hard disks and network
interface cards.

When a user runs a program, the operating system creates a process—an instance
of a computer program that is being executed. A process consists of several entities:

. The executable machine language program.. A block of memory, which will include the executable code, a call stack that keeps
track of active functions, a heap, and some other memory locations.. Descriptors of resources that the operating system has allocated to the process—
for example, file descriptors.. Security information—for example, information specifying which hardware and
software resources the process can access.. Information about the state of the process, such as whether the process is ready to
run or is waiting on some resource, the content of the registers, and information
about the process’ memory.

Most modern operating systems are multitasking. This means that the operating
system provides support for the apparent simultaneous execution of multiple pro-
grams. This is possible even on a system with a single core, since each process runs
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A process and two threads

for a small interval of time (typically a few milliseconds), often called a time slice.
After one running program has executed for a time slice, the operating system can
run a different program. A multitasking OS may change the running process many
times a minute, even though changing the running process can take a long time.

In a multitasking OS if a process needs to wait for a resource—for example, it
needs to read data from external storage—it will block. This means that it will stop
executing and the operating system can run another process. However, many pro-
grams can continue to do useful work even though the part of the program that is
currently executing must wait on a resource. For example, an airline reservation
system that is blocked waiting for a seat map for one user could provide a list of
available flights to another user. Threading provides a mechanism for programmers
to divide their programs into more or less independent tasks with the property that
when one thread is blocked another thread can be run. Furthermore, in most sys-
tems it’s possible to switch between threads much faster than it’s possible to switch
between processes. This is because threads are “lighter weight” than processes.
Threads are contained within processes, so they can use the same executable, and
they usually share the same memory and the same I/O devices. In fact, two threads
belonging to one process can share most of the process’ resources. The two most
important exceptions are that they’ll need a record of their own program counters
and they’ll need their own call stacks so that they can execute independently of each
other.

If a process is the “master” thread of execution and threads are started and stopped
by the process, then we can envision the process and its subsidiary threads as lines:
when a thread is started, it forks off the process; when a thread terminates, it joins
the process. See Figure 2.2.

2.2 MODIFICATIONS TO THE VON NEUMANN MODEL
As we noted earlier, since the first electronic digital computers were developed back
in the 1940s, computer scientists and computer engineers have made many improve-
ments to the basic von Neumann architecture. Many are targeted at reducing the
problem of the von Neumann bottleneck, but many are also targeted at simply mak-
ing CPUs faster. In this section we’ll look at three of these improvements: caching,
virtual memory, and low-level parallelism.
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2.2.1 The basics of caching
Caching is one of the most widely used methods of addressing the von Neumann bot-
tleneck. To understand the ideas behind caching, recall our example. A company has
a factory (CPU) in one town and a warehouse (main memory) in another, and there is
a single, two-lane road joining the factory and the warehouse. There are a number of
possible solutions to the problem of transporting raw materials and finished products
between the warehouse and the factory. One is to widen the road. Another is to move
the factory and/or the warehouse or to build a unified factory and warehouse. Caching
exploits both of these ideas. Rather than transporting a single instruction or data item,
we can use an effectively wider interconnection, an interconnection that can transport
more data or more instructions in a single memory access. Also, rather than storing
all data and instructions exclusively in main memory, we can store blocks of data and
instructions in special memory that is effectively closer to the registers in the CPU.

In general a cache is a collection of memory locations that can be accessed in less
time than some other memory locations. In our setting, when we talk about caches
we’ll usually mean a CPU cache, which is a collection of memory locations that the
CPU can access more quickly than it can access main memory. A CPU cache can
either be located on the same chip as the CPU or it can be located on a separate chip
that can be accessed much faster than an ordinary memory chip.

Once we have a cache, an obvious problem is deciding which data and instructions
should be stored in the cache. The universally used principle is based on the idea that
programs tend to use data and instructions that are physically close to recently used
data and instructions. After executing an instruction, programs typically execute the
next instruction; branching tends to be relatively rare. Similarly, after a program has
accessed one memory location, it often accesses a memory location that is physically
nearby. An extreme example of this is in the use of arrays. Consider the loop

float z[1000];
. . .
sum = 0.0;
for (i = 0; i < 1000; i++)

sum += z[i];

Arrays are allocated as blocks of contiguous memory locations. So, for example,
the location storing z[1] immediately follows the location z[0]. Thus as long as
i < 999, the read of z[i] is immediately followed by a read of z[i+1].

The principle that an access of one location is followed by an access of a nearby
location is often called locality. After accessing one memory location (instruction or
data), a program will typically access a nearby location (spatial locality) in the near
future (temporal locality).

In order to exploit the principle of locality, the system uses an effectively wider
interconnect to access data and instructions. That is, a memory access will effec-
tively operate on blocks of data and instructions instead of individual instructions
and individual data items. These blocks are called cache blocks or cache lines.
A typical cache line stores 8 to 16 times as much information as a single memory
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location. In our example, if a cache line stores 16 floats, then when we first go to
add sum += z[0], the system might read the first 16 elements of z, z[0], z[1], . . . ,
z[15] from memory into cache. So the next 15 additions will use elements of z that
are already in the cache.

Conceptually, it’s often convenient to think of a CPU cache as a single mono-
lithic structure. In practice, though, the cache is usually divided into levels: the first
level (L1) is the smallest and the fastest, and higher levels (L2, L3, . . . ) are larger and
slower. Most systems currently, in 2010, have at least two levels and having three lev-
els is quite common. Caches usually store copies of information in slower memory,
and, if we think of a lower-level (faster, smaller) cache as a cache for a higher level,
this usually applies. So, for example, a variable stored in a level 1 cache will also be
stored in level 2. However, some multilevel caches don’t duplicate information that’s
available in another level. For these caches, a variable in a level 1 cache might not be
stored in any other level of the cache, but it would be stored in main memory.

When the CPU needs to access an instruction or data, it works its way down the
cache hierarchy: First it checks the level 1 cache, then the level 2, and so on. Finally,
if the information needed isn’t in any of the caches, it accesses main memory. When a
cache is checked for information and the information is available, it’s called a cache
hit or just a hit. If the information isn’t available, it’s called a cache miss or a miss.
Hit or miss is often modified by the level. For example, when the CPU attempts to
access a variable, it might have an L1 miss and an L2 hit.

Note that the memory access terms read and write are also used for caches. For
example, we might read an instruction from an L2 cache, and we might write data to
an L1 cache.

When the CPU attempts to read data or instructions and there’s a cache read-
miss, it will read from memory the cache line that contains the needed information
and store it in the cache. This may stall the processor, while it waits for the slower
memory: the processor may stop executing statements from the current program until
the required data or instructions have been fetched from memory. So in our example,
when we read z[0], the processor may stall while the cache line containing z[0] is
transferred from memory into the cache.

When the CPU writes data to a cache, the value in the cache and the value in main
memory are different or inconsistent. There are two basic approaches to dealing with
the inconsistency. In write-through caches, the line is written to main memory when
it is written to the cache. In write-back caches, the data isn’t written immediately.
Rather, the updated data in the cache is marked dirty, and when the cache line is
replaced by a new cache line from memory, the dirty line is written to memory.

2.2.2 Cache mappings
Another issue in cache design is deciding where lines should be stored. That is, if
we fetch a cache line from main memory, where in the cache should it be placed?
The answer to this question varies from system to system. At one extreme is a fully
associative cache, in which a new line can be placed at any location in the cache. At
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the other extreme is a direct mapped cache, in which each cache line has a unique
location in the cache to which it will be assigned. Intermediate schemes are called
n-way set associative. In these schemes, each cache line can be placed in one of n
different locations in the cache. For example, in a two way set associative cache, each
line can be mapped to one of two locations.

As an example, suppose our main memory consists of 16 lines with indexes 0–15,
and our cache consists of 4 lines with indexes 0–3. In a fully associative cache, line 0
can be assigned to cache location 0, 1, 2, or 3. In a direct mapped cache, we might
assign lines by looking at their remainder after division by 4. So lines 0, 4, 8, and 12
would be mapped to cache index 0, lines 1, 5, 9, and 13 would be mapped to cache
index 1, and so on. In a two way set associative cache, we might group the cache into
two sets: indexes 0 and 1 form one set—set 0—and indexes 2 and 3 form another—
set 1. So we could use the remainder of the main memory index modulo 2, and cache
line 0 would be mapped to either cache index 0 or cache index 1. See Table 2.1.

When more than one line in memory can be mapped to several different locations
in a cache (fully associative and n-way set associative), we also need to be able to
decide which line should be replaced or evicted. In our preceding example, if, for
example, line 0 is in location 0 and line 2 is in location 1, where would we store
line 4? The most commonly used scheme is called least recently used. As the name
suggests, the cache has a record of the relative order in which the blocks have been

Table 2.1 Assignments of a 16-line Main Memory
to a 4-line Cache

Cache Location

Memory Index Fully Assoc Direct Mapped 2-way

0 0, 1, 2, or 3 0 0 or 1
1 0, 1, 2, or 3 1 2 or 3
2 0, 1, 2, or 3 2 0 or 1
3 0, 1, 2, or 3 3 2 or 3
4 0, 1, 2, or 3 0 0 or 1
5 0, 1, 2, or 3 1 2 or 3
6 0, 1, 2, or 3 2 0 or 1
7 0, 1, 2, or 3 3 2 or 3
8 0, 1, 2, or 3 0 0 or 1
9 0, 1, 2, or 3 1 2 or 3
10 0, 1, 2, or 3 2 0 or 1
11 0, 1, 2, or 3 3 2 or 3
12 0, 1, 2, or 3 0 0 or 1
13 0, 1, 2, or 3 1 2 or 3
14 0, 1, 2, or 3 2 0 or 1
15 0, 1, 2, or 3 3 2 or 3
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used, and if line 0 were used more recently than line 2, then line 2 would be evicted
and replaced by line 4.

2.2.3 Caches and programs: an example
It’s important to remember that the workings of the CPU cache are controlled by
the system hardware, and we, the programmers, don’t directly determine which data
and which instructions are in the cache. However, knowing the principle of spatial
and temporal locality allows us to have some indirect control over caching. As an
example, C stores two-dimensional arrays in “row-major” order. That is, although
we think of a two-dimensional array as a rectangular block, memory is effectively a
huge one-dimensional array. So in row-major storage, we store row 0 first, then row
1, and so on. In the following two code segments, we would expect the first pair of
nested loops to have much better performance than the second, since it’s accessing
the data in the two-dimensional array in contiguous blocks.

double A[MAX][MAX], x[MAX], y[MAX];
. . .
/∗ Initialize A and x, assign y = 0 ∗/
. . .
/∗ First pair of loops ∗/
for (i = 0; i < MAX; i++)

for (j = 0; j < MAX; j++)
y[i] += A[i][j]∗x[j];

. . .
/∗ Assign y = 0 ∗/
. . .
/∗ Second pair of loops ∗/
for (j = 0; j < MAX; j++)

for (i = 0; i < MAX; i++)
y[i] += A[i][j]∗x[j];

To better understand this, suppose MAX is four, and the elements of A are stored in
memory as follows:

Cache Line Elements of A

0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

3 A[3][0] A[3][1] A[3][2] A[3][3]

So, for example, A[0][1] is stored immediately after A[0][0] and A[1][0] is stored
immediately after A[0][3].

Let’s suppose that none of the elements of A are in the cache when each pair of
loops starts executing. Let’s also suppose that a cache line consists of four elements
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of A and A[0][0] is the first element of a cache line. Finally, we’ll suppose that the
cache is direct mapped and it can only store eight elements of A, or two cache lines.
(We won’t worry about x and y.)

Both pairs of loops attempt to first access A[0][0]. Since it’s not in the cache,
this will result in a cache miss, and the system will read the line consisting of the
first row of A, A[0][0], A[0][1], A[0][2], A[0][3], into the cache. The first pair of
loops then accesses A[0][1], A[0][2], A[0][3], all of which are in the cache, and
the next miss in the first pair of loops will occur when the code accesses A[1][0].
Continuing in this fashion, we see that the first pair of loops will result in a total
of four misses when it accesses elements of A, one for each row. Note that since
our hypothetical cache can only store two lines or eight elements of A, when we
read the first element of row two and the first element of row three, one of the
lines that’s already in the cache will have to be evicted from the cache, but once
a line is evicted, the first pair of loops won’t need to access the elements of that line
again.

After reading the first row into the cache, the second pair of loops needs to then
access A[1][0], A[2][0], A[3][0], none of which are in the cache. So the next three
accesses of A will also result in misses. Furthermore, because the cache is small, the
reads of A[2][0] and A[3][0] will require that lines already in the cache be evicted.
Since A[2][0] is stored in cache line 2, reading its line will evict line 0, and reading
A[3][0] will evict line 1. After finishing the first pass through the outer loop, we’ll
next need to access A[0][1], which was evicted with the rest of the first row. So we
see that every time we read an element of A, we’ll have a miss, and the second pair of
loops results in 16 misses.

Thus, we’d expect the first pair of nested loops to be much faster than the second.
In fact, if we run the code on one of our systems with MAX = 1000, the first pair of
nested loops is approximately three times faster than the second pair.

2.2.4 Virtual memory
Caches make it possible for the CPU to quickly access instructions and data that are
in main memory. However, if we run a very large program or a program that accesses
very large data sets, all of the instructions and data may not fit into main memory. This
is especially true with multitasking operating systems; in order to switch between
programs and create the illusion that multiple programs are running simultaneously,
the instructions and data that will be used during the next time slice should be in main
memory. Thus, in a multitasking system, even if the main memory is very large, many
running programs must share the available main memory. Furthermore, this sharing
must be done in such a way that each program’s data and instructions are protected
from corruption by other programs.

Virtual memory was developed so that main memory can function as a cache
for secondary storage. It exploits the principle of spatial and temporal locality by
keeping in main memory only the active parts of the many running programs; those
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parts that are idle are kept in a block of secondary storage called swap space. Like
CPU caches, virtual memory operates on blocks of data and instructions. These
blocks are commonly called pages, and since secondary storage access can be hun-
dreds of thousands of times slower than main memory access, pages are relatively
large—most systems have a fixed page size that currently ranges from 4 to 16
kilobytes.

We may run into trouble if we try to assign physical memory addresses to pages
when we compile a program. If we do this, then each page of the program can only
be assigned to one block of memory, and with a multitasking operating system, we’re
likely to have many programs wanting to use the same block of memory. In order
to avoid this problem, when a program is compiled, its pages are assigned virtual
page numbers. Then, when the program is run, a table is created that maps the vir-
tual page numbers to physical addresses. When the program is run and it refers to a
virtual address, this page table is used to translate the virtual address into a physical
address. If the creation of the page table is managed by the operating system, it can
ensure that the memory used by one program doesn’t overlap the memory used by
another.

A drawback to the use of a page table is that it can double the time needed to
access a location in main memory. Suppose, for example, that we want to execute
an instruction in main memory. Then our executing program will have the virtual
address of this instruction, but before we can find the instruction in memory, we’ll
need to translate the virtual address into a physical address. In order to do this,
we’ll need to find the page in memory that contains the instruction. Now the vir-
tual page number is stored as a part of the virtual address. As an example, suppose
our addresses are 32 bits and our pages are 4 kilobytes = 4096 bytes. Then each byte
in the page can be identified with 12 bits, since 212

= 4096. Thus, we can use the low-
order 12 bits of the virtual address to locate a byte within a page, and the remaining
bits of the virtual address can be used to locate an individual page. See Table 2.2.
Observe that the virtual page number can be computed from the virtual address with-
out going to memory. However, once we’ve found the virtual page number, we’ll
need to access the page table to translate it into a physical page. If the required
part of the page table isn’t in cache, we’ll need to load it from memory. After it’s
loaded, we can translate our virtual address to a physical address and get the required
instruction.

Table 2.2 Virtual Address Divided into
Virtual Page Number and Byte Offset

Virtual Address

Virtual Page Number Byte Offset

31 30 · · · 13 12 11 10 · · · 1 0

1 0 · · · 1 1 0 0 · · · 1 1
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This is clearly a problem. Although multiple programs can use main memory
at more or less the same time, using a page table has the potential to significantly
increase each program’s overall run-time. In order to address this issue, processors
have a special address translation cache called a translation-lookaside buffer, or
TLB. It caches a small number of entries (typically 16–512) from the page table in
very fast memory. Using the principle of spatial and temporal locality, we would
expect that most of our memory references will be to pages whose physical address
is stored in the TLB, and the number of memory references that require accesses to
the page table in main memory will be substantially reduced.

The terminology for the TLB is the same as the terminology for caches. When we
look for an address and the virtual page number is in the TLB, it’s called a TLB hit.
If it’s not in the TLB, it’s called a miss. The terminology for the page table, however,
has an important difference from the terminology for caches. If we attempt to access a
page that’s not in memory, that is, the page table doesn’t have a valid physical address
for the page and the page is only stored on disk, then the attempted access is called a
page fault.

The relative slowness of disk accesses has a couple of additional consequences
for virtual memory. First, with CPU caches we could handle write-misses with either
a write-through or write-back scheme. With virtual memory, however, disk accesses
are so expensive that they should be avoided whenever possible, so virtual memory
always uses a write-back scheme. This can be handled by keeping a bit on each page
in memory that indicates whether the page has been updated. If it has been updated,
when it is evicted from main memory, it will be written to disk. Second, since disk
accesses are so slow, management of the page table and the handling of disk accesses
can be done by the operating system. Thus, even though we as programmers don’t
directly control virtual memory, unlike CPU caches, which are handled by system
hardware, virtual memory is usually controlled by a combination of system hardware
and operating system software.

2.2.5 Instruction-level parallelism
Instruction-level parallelism, or ILP, attempts to improve processor performance
by having multiple processor components or functional units simultaneously exe-
cuting instructions. There are two main approaches to ILP: pipelining, in which
functional units are arranged in stages, and multiple issue, in which multiple instruc-
tions can be simultaneously initiated. Both approaches are used in virtually all
modern CPUs.

Pipelining
The principle of pipelining is similar to a factory assembly line: while one team is
bolting a car’s engine to the chassis, another team can connect the transmission to
the engine and the driveshaft of a car that’s already been processed by the first team,
and a third team can bolt the body to the chassis in a car that’s been processed by
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the first two teams. As an example involving computation, suppose we want to add
the floating point numbers 9.87× 104 and 6.54× 103. Then we can use the following
steps:

Time Operation Operand 1 Operand 2 Result

0 Fetch operands 9.87×104 6.54×103

1 Compare exponents 9.87×104 6.54×103

2 Shift one operand 9.87×104 0.654×104

3 Add 9.87×104 0.654×104 10.524×104

4 Normalize result 9.87×104 0.654×104 1.0524×105

5 Round result 9.87×104 0.654×104 1.05×105

6 Store result 9.87×104 0.654×104 1.05×105

Here we’re using base 10 and a three digit mantissa or significand with one digit to
the left of the decimal point. Thus, in the example, normalizing shifts the decimal
point one unit to the left, and rounding rounds to three digits.

Now if each of the operations takes one nanosecond (10−9 seconds), the addition
operation will take seven nanoseconds. So if we execute the code

float x[1000], y[1000], z[1000];
. . .
for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];

the for loop will take something like 7000 nanoseconds.
As an alternative, suppose we divide our floating point adder into seven sepa-

rate pieces of hardware or functional units. The first unit will fetch two operands,
the second will compare exponents, and so on. Also suppose that the output of one
functional unit is the input to the next. So, for example, the output of the functional
unit that adds the two values is the input to the unit that normalizes the result. Then
a single floating point addition will still take seven nanoseconds. However, when we
execute the for loop, we can fetch x[1] and y[1] while we’re comparing the expo-
nents of x[0] and y[0]. More generally, it’s possible for us to simultaneously execute
seven different stages in seven different additions. See Table 2.3. From the table we
see that after time 5, the pipelined loop produces a result every nanosecond, instead of
every seven nanoseconds, so the total time to execute the for loop has been reduced
from 7000 nanoseconds to 1006 nanoseconds—an improvement of almost a factor of
seven.

In general, a pipeline with k stages won’t get a k-fold improvement in per-
formance. For example, if the times required by the various functional units are
different, then the stages will effectively run at the speed of the slowest functional
unit. Furthermore, delays such as waiting for an operand to become available can
cause the pipeline to stall. See Exercise 2.1 for more details on the performance of
pipelines.
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Table 2.3 Pipelined Addition. Numbers in the Table Are
Subscripts of Operands/Results

Time Fetch Compare Shift Add Normalize Round Store

0 0
1 1 0
2 2 1 0
3 3 2 1 0
4 4 3 2 1 0
5 5 4 3 2 1 0
6 6 5 4 3 2 1 0
...

...
...

...
...

...
...

...
999 999 998 997 996 995 994 993
1000 999 998 997 996 995 994
1001 999 998 997 996 995
1002 999 998 997 996
1003 999 998 997
1004 999 998
1005 999

Multiple issue
Pipelines improve performance by taking individual pieces of hardware or functional
units and connecting them in sequence. Multiple issue processors replicate functional
units and try to simultaneously execute different instructions in a program. For exam-
ple, if we have two complete floating point adders, we can approximately halve the
time it takes to execute the loop

for (i = 0; i < 1000; i++)
z[i] = x[i] + y[i];

While the first adder is computing z[0], the second can compute z[1]; while the first
is computing z[2], the second can compute z[3]; and so on.

If the functional units are scheduled at compile time, the multiple issue system is
said to use static multiple issue. If they’re scheduled at run-time, the system is said
to use dynamic multiple issue. A processor that supports dynamic multiple issue is
sometimes said to be superscalar.

Of course, in order to make use of multiple issue, the system must find instruc-
tions that can be executed simultaneously. One of the most important techniques is
speculation. In speculation, the compiler or the processor makes a guess about an
instruction, and then executes the instruction on the basis of the guess. As a sim-
ple example, in the following code, the system might predict that the outcome of
z = x + y will give z a positive value, and, as a consequence, it will assign w = x.



28 CHAPTER 2 Parallel Hardware and Parallel Software

z = x + y;
if (z > 0)

w = x;
else

w = y;

As another example, in the code

z = x + y;
w = ∗a p; /∗ a p is a pointer ∗/

the system might predict that a p does not refer to z, and hence it can simultaneously
execute the two assignments.

As both examples make clear, speculative execution must allow for the possibility
that the predicted behavior is incorrect. In the first example, we will need to go back
and execute the assignment w = y if the assignment z = x + y results in a value
that’s not positive. In the second example, if a p does point to z, we’ll need to re-
execute the assignment w = ∗a p.

If the compiler does the speculation, it will usually insert code that tests whether
the speculation was correct, and, if not, takes corrective action. If the hardware does
the speculation, the processor usually stores the result(s) of the speculative execution
in a buffer. When it’s known that the speculation was correct, the contents of the
buffer are transferred to registers or memory. If the speculation was incorrect, the
contents of the buffer are discarded and the instruction is re-executed.

While dynamic multiple issue systems can execute instructions out of order, in
current generation systems the instructions are still loaded in order and the results of
the instructions are also committed in order. That is, the results of instructions are
written to registers and memory in the program-specified order.

Optimizing compilers, on the other hand, can reorder instructions. This, as we’ll
see later, can have important consequences for shared-memory programming.

2.2.6 Hardware multithreading
ILP can be very difficult to exploit: it is a program with a long sequence of depen-
dent statements offers few opportunities. For example, in a direct calculation of the
Fibonacci numbers

f[0] = f[1] = 1;
for (i = 2; i <= n; i++)

f[i] = f[i−1] + f[i−2];

there’s essentially no opportunity for simultaneous execution of instructions.
Thread-level parallelism, or TLP, attempts to provide parallelism through

the simultaneous execution of different threads, so it provides a coarser-grained
parallelism than ILP, that is, the program units that are being simultaneously
executed—threads—are larger or coarser than the finer-grained units—individual
instructions.
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Hardware multithreading provides a means for systems to continue doing use-
ful work when the task being currently executed has stalled—for example, if the
current task has to wait for data to be loaded from memory. Instead of looking for
parallelism in the currently executing thread, it may make sense to simply run another
thread. Of course, in order for this to be useful, the system must support very rapid
switching between threads. For example, in some older systems, threads were sim-
ply implemented as processes, and in the time it took to switch between processes,
thousands of instructions could be executed.

In fine-grained multithreading, the processor switches between threads after each
instruction, skipping threads that are stalled. While this approach has the potential to
avoid wasted machine time due to stalls, it has the drawback that a thread that’s
ready to execute a long sequence of instructions may have to wait to execute every
instruction. Coarse-grained multithreading attempts to avoid this problem by only
switching threads that are stalled waiting for a time-consuming operation to complete
(e.g., a load from main memory). This has the virtue that switching threads doesn’t
need to be nearly instantaneous. However, the processor can be idled on shorter stalls,
and thread switching will also cause delays.

Simultaneous multithreading, or SMT, is a variation on fine-grained multi-
threading. It attempts to exploit superscalar processors by allowing multiple threads
to make use of the multiple functional units. If we designate “preferred” threads—
threads that have many instructions ready to execute—we can somewhat reduce the
problem of thread slowdown.

2.3 PARALLEL HARDWARE
Multiple issue and pipelining can clearly be considered to be parallel hardware, since
functional units are replicated. However, since this form of parallelism isn’t usually
visible to the programmer, we’re treating both of them as extensions to the basic von
Neumann model, and for our purposes, parallel hardware will be limited to hardware
that’s visible to the programmer. In other words, if she can readily modify her source
code to exploit it, or if she must modify her source code to exploit it, then we’ll
consider the hardware to be parallel.

2.3.1 SIMD systems
In parallel computing, Flynn’s taxonomy [18] is frequently used to classify computer
architectures. It classifies a system according to the number of instruction streams and
the number of data streams it can simultaneously manage. A classical von Neumann
system is therefore a single instruction stream, single data stream, or SISD system,
since it executes a single instruction at a time and it can fetch or store one item of
data at a time.

Single instruction, multiple data, or SIMD, systems are parallel systems. As
the name suggests, SIMD systems operate on multiple data streams by applying the
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same instruction to multiple data items, so an abstract SIMD system can be thought
of as having a single control unit and multiple ALUs. An instruction is broadcast
from the control unit to the ALUs, and each ALU either applies the instruction to the
current data item, or it is idle. As an example, suppose we want to carry out a “vector
addition.” That is, suppose we have two arrays x and y, each with n elements, and we
want to add the elements of y to the elements of x:

for (i = 0; i < n; i++)
x[i] += y[i];

Suppose further that our SIMD system has n ALUs. Then we could load x[i] and
y[i] into the ith ALU, have the ith ALU add y[i] to x[i], and store the result in
x[i]. If the system has m ALUs and m < n, we can simply execute the additions in
blocks of m elements at a time. For example, if m= 4 and n= 15, we can first add ele-
ments 0 to 3, then elements 4 to 7, then elements 8 to 11, and finally elements 12 to 14.
Note that in the last group of elements in our example—elements 12 to 14—we’re
only operating on three elements of x and y, so one of the four ALUs will be idle.

The requirement that all the ALUs execute the same instruction or are idle can
seriously degrade the overall performance of a SIMD system. For example, suppose
we only want to carry out the addition if y[i] is positive:

for (i = 0; i < n; i++)
if (y[i] > 0.0) x[i] += y[i];

In this setting, we must load each element of y into an ALU and determine whether
it’s positive. If y[i] is positive, we can proceed to carry out the addition. Otherwise,
the ALU storing y[i] will be idle while the other ALUs carry out the addition.

Note also that in a “classical” SIMD system, the ALUs must operate syn-
chronously, that is, each ALU must wait for the next instruction to be broadcast
before proceeding. Further, the ALUs have no instruction storage, so an ALU can’t
delay execution of an instruction by storing it for later execution.

Finally, as our first example shows, SIMD systems are ideal for parallelizing sim-
ple loops that operate on large arrays of data. Parallelism that’s obtained by dividing
data among the processors and having the processors all apply (more or less) the same
instructions to their subsets of the data is called data-parallelism. SIMD parallelism
can be very efficient on large data parallel problems, but SIMD systems often don’t
do very well on other types of parallel problems.

SIMD systems have had a somewhat checkered history. In the early 1990s a
maker of SIMD systems (Thinking Machines) was the largest manufacturer of par-
allel supercomputers. However, by the late 1990s the only widely produced SIMD
systems were vector processors. More recently, graphics processing units, or GPUs,
and desktop CPUs are making use of aspects of SIMD computing.

Vector processors
Although what constitutes a vector processor has changed over the years, their key
characteristic is that they can operate on arrays or vectors of data, while conventional
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CPUs operate on individual data elements or scalars. Typical recent systems have the
following characteristics:

. Vector registers. These are registers capable of storing a vector of operands and
operating simultaneously on their contents. The vector length is fixed by the
system, and can range from 4 to 128 64-bit elements.. Vectorized and pipelined functional units. Note that the same operation is applied
to each element in the vector, or, in the case of operations like addition, the same
operation is applied to each pair of corresponding elements in the two vectors.
Thus, vector operations are SIMD.. Vector instructions. These are instructions that operate on vectors rather than
scalars. If the vector length is vector length, these instructions have the great
virtue that a simple loop such as

for (i = 0; i < n; i++)
x[i] += y[i];

requires only a single load, add, and store for each block of vector length
elements, while a conventional system requires a load, add, and store for each
element.. Interleaved memory. The memory system consists of multiple “banks” of memory,
which can be accessed more or less independently. After accessing one bank, there
will be a delay before it can be reaccessed, but a different bank can be accessed
much sooner. So if the elements of a vector are distributed across multiple banks,
there can be little to no delay in loading/storing successive elements.. Strided memory access and hardware scatter/gather. In strided memory access,
the program accesses elements of a vector located at fixed intervals. For example,
accessing the first element, the fifth element, the ninth element, and so on, would
be strided access with a stride of four. Scatter/gather (in this context) is writing
(scatter) or reading (gather) elements of a vector located at irregular intervals—
for example, accessing the first element, the second element, the fourth element,
the eighth element, and so on. Typical vector systems provide special hardware to
accelerate strided access and scatter/gather.

Vector processors have the virtue that for many applications, they are very fast and
very easy to use. Vectorizing compilers are quite good at identifying code that can
be vectorized. Further, they identify loops that cannot be vectorized, and they often
provide information about why a loop couldn’t be vectorized. The user can thereby
make informed decisions about whether it’s possible to rewrite the loop so that it will
vectorize. Vector systems have very high memory bandwidth, and every data item
that’s loaded is actually used, unlike cache-based systems that may not make use of
every item in a cache line. On the other hand, they don’t handle irregular data struc-
tures as well as other parallel architectures, and there seems to be a very finite limit
to their scalability, that is, their ability to handle ever larger problems. It’s difficult
to see how systems could be created that would operate on ever longer vectors. Cur-
rent generation systems scale by increasing the number of vector processors, not the



32 CHAPTER 2 Parallel Hardware and Parallel Software

vector length. Current commodity systems provide limited support for operations
on very short vectors, while processors that operate on long vectors are custom
manufactured, and, consequently, very expensive.

Graphics processing units
Real-time graphics application programming interfaces, or APIs, use points, lines,
and triangles to internally represent the surface of an object. They use a graphics pro-
cessing pipeline to convert the internal representation into an array of pixels that can
be sent to a computer screen. Several of the stages of this pipeline are programmable.
The behavior of the programmable stages is specified by functions called shader
functions. The shader functions are typically quite short—often just a few lines of C
code. They’re also implicitly parallel, since they can be applied to multiple elements
(e.g., vertices) in the graphics stream. Since the application of a shader function to
nearby elements often results in the same flow of control, GPUs can optimize perfor-
mance by using SIMD parallelism, and in the current generation all GPUs use SIMD
parallelism. This is obtained by including a large number of ALUs (e.g., 80) on each
GPU processing core.

Processing a single image can require very large amounts of data—hundreds of
megabytes of data for a single image is not unusual. GPUs therefore need to maintain
very high rates of data movement, and in order to avoid stalls on memory accesses,
they rely heavily on hardware multithreading; some systems are capable of storing
the state of more than a hundred suspended threads for each executing thread. The
actual number of threads depends on the amount of resources (e.g., registers) needed
by the shader function. A drawback here is that many threads processing a lot of data
are needed to keep the ALUs busy, and GPUs may have relatively poor performance
on small problems.

It should be stressed that GPUs are not pure SIMD systems. Although the ALUs
on a given core do use SIMD parallelism, current generation GPUs can have dozens
of cores, which are capable of executing independent instruction streams.

GPUs are becoming increasingly popular for general, high-performance comput-
ing, and several languages have been developed that allow users to exploit their
power. For further details see [30].

2.3.2 MIMD systems
Multiple instruction, multiple data, or MIMD, systems support multiple simulta-
neous instruction streams operating on multiple data streams. Thus, MIMD systems
typically consist of a collection of fully independent processing units or cores, each
of which has its own control unit and its own ALU. Furthermore, unlike SIMD sys-
tems, MIMD systems are usually asynchronous, that is, the processors can operate
at their own pace. In many MIMD systems there is no global clock, and there may
be no relation between the system times on two different processors. In fact, unless
the programmer imposes some synchronization, even if the processors are executing
exactly the same sequence of instructions, at any given instant they may be executing
different statements.
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As we noted in Chapter 1, there are two principal types of MIMD systems:
shared-memory systems and distributed-memory systems. In a shared-memory sys-
tem a collection of autonomous processors is connected to a memory system via an
interconnection network, and each processor can access each memory location. In a
shared-memory system, the processors usually communicate implicitly by accessing
shared data structures. In a distributed-memory system, each processor is paired
with its own private memory, and the processor-memory pairs communicate over
an interconnection network. So in distributed-memory systems the processors usu-
ally communicate explicitly by sending messages or by using special functions that
provide access to the memory of another processor. See Figures 2.3 and 2.4.

Interconnect

CPU CPU CPU CPU

Memory

FIGURE 2.3

A shared-memory system
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Memory
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Memory
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FIGURE 2.4

A distributed-memory system

Shared-memory systems
The most widely available shared-memory systems use one or more multicore pro-
cessors. As we discussed in Chapter 1, a multicore processor has multiple CPUs or
cores on a single chip. Typically, the cores have private level 1 caches, while other
caches may or may not be shared between the cores.
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FIGURE 2.5

A UMA multicore system

In shared-memory systems with multiple multicore processors, the interconnect
can either connect all the processors directly to main memory or each processor can
have a direct connection to a block of main memory, and the processors can access
each others’ blocks of main memory through special hardware built into the pro-
cessors. See Figures 2.5 and 2.6. In the first type of system, the time to access all
the memory locations will be the same for all the cores, while in the second type a
memory location to which a core is directly connected can be accessed more quickly
than a memory location that must be accessed through another chip. Thus, the first
type of system is called a uniform memory access, or UMA, system, while the sec-
ond type is called a nonuniform memory access, or NUMA, system. UMA systems
are usually easier to program, since the programmer doesn’t need to worry about
different access times for different memory locations. This advantage can be offset
by the faster access to the directly connected memory in NUMA systems. Further-
more, NUMA systems have the potential to use larger amounts of memory than UMA
systems.

Core 1 Core 2

Interconnect Interconnect

MemoryMemory

Core 1 Core 2

Chip 2Chip 1

FIGURE 2.6

A NUMA multicore system
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Distributed-memory systems
The most widely available distributed-memory systems are called clusters. They are
composed of a collection of commodity systems—for example, PCs—connected by
a commodity interconnection network—for example, Ethernet. In fact, the nodes of
these systems, the individual computational units joined together by the commu-
nication network, are usually shared-memory systems with one or more multicore
processors. To distinguish such systems from pure distributed-memory systems, they
are sometimes called hybrid systems. Nowadays, it’s usually understood that a
cluster will have shared-memory nodes.

The grid provides the infrastructure necessary to turn large networks of geograph-
ically distributed computers into a unified distributed-memory system. In general,
such a system will be heterogeneous, that is, the individual nodes may be built from
different types of hardware.

2.3.3 Interconnection networks
The interconnect plays a decisive role in the performance of both distributed- and
shared-memory systems: even if the processors and memory have virtually unlimited
performance, a slow interconnect will seriously degrade the overall performance of
all but the simplest parallel program. See, for example, Exercise 2.10.

Although some of the interconnects have a great deal in common, there are
enough differences to make it worthwhile to treat interconnects for shared-memory
and distributed-memory separately.

Shared-memory interconnects
Currently the two most widely used interconnects on shared-memory systems are
buses and crossbars. Recall that a bus is a collection of parallel communication wires
together with some hardware that controls access to the bus. The key characteristic
of a bus is that the communication wires are shared by the devices that are connected
to it. Buses have the virtue of low cost and flexibility; multiple devices can be con-
nected to a bus with little additional cost. However, since the communication wires
are shared, as the number of devices connected to the bus increases, the likelihood
that there will be contention for use of the bus increases, and the expected perfor-
mance of the bus decreases. Therefore, if we connect a large number of processors to
a bus, we would expect that the processors would frequently have to wait for access
to main memory. Thus, as the size of shared-memory systems increases, buses are
rapidly being replaced by switched interconnects.

As the name suggests, switched interconnects use switches to control the rout-
ing of data among the connected devices. A crossbar is illustrated in Figure 2.7(a).
The lines are bidirectional communication links, the squares are cores or memory
modules, and the circles are switches.

The individual switches can assume one of the two configurations shown in
Figure 2.7(b). With these switches and at least as many memory modules as pro-
cessors, there will only be a conflict between two cores attempting to access memory
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FIGURE 2.7

(a) A crossbar switch connecting four processors (Pi) and four memory modules (Mj); (b)
configuration of internal switches in a crossbar; (c) simultaneous memory accesses by the
processors
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if the two cores attempt to simultaneously access the same memory module. For
example, Figure 2.7(c) shows the configuration of the switches if P1 writes to M4, P2
reads from M3, P3 reads from M1, and P4 writes to M2.

Crossbars allow simultaneous communication among different devices, so they
are much faster than buses. However, the cost of the switches and links is relatively
high. A small bus-based system will be much less expensive than a crossbar-based
system of the same size.

Distributed-memory interconnects
Distributed-memory interconnects are often divided into two groups: direct inter-
connects and indirect interconnects. In a direct interconnect each switch is directly
connected to a processor-memory pair, and the switches are connected to each other.
Figure 2.8 shows a ring and a two-dimensional toroidal mesh. As before, the circles
are switches, the squares are processors, and the lines are bidirectional links. A ring
is superior to a simple bus since it allows multiple simultaneous communications.
However, it’s easy to devise communication schemes in which some of the processors
must wait for other processors to complete their communications. The toroidal mesh
will be more expensive than the ring, because the switches are more complex—they
must support five links instead of three—and if there are p processors, the number of
links is 3p in a toroidal mesh, while it’s only 2p in a ring. However, it’s not difficult to
convince yourself that the number of possible simultaneous communications patterns
is greater with a mesh than with a ring.

One measure of “number of simultaneous communications” or “connectivity”
is bisection width. To understand this measure, imagine that the parallel system is

(b)

P1 P2 P3

(a)

FIGURE 2.8

(a) A ring and (b) a toroidal mesh



38 CHAPTER 2 Parallel Hardware and Parallel Software

(a) (b)

A

B

A

A

B

B

B

A

B

B

B

A

A

B

A

A

FIGURE 2.9

Two bisections of a ring: (a) only two communications can take place between the halves
and (b) four simultaneous connections can take place

divided into two halves, and each half contains half of the processors or nodes. How
many simultaneous communications can take place “across the divide” between the
halves? In Figure 2.9(a) we’ve divided a ring with eight nodes into two groups of
four nodes, and we can see that only two communications can take place between
the halves. (To make the diagrams easier to read, we’ve grouped each node with
its switch in this and subsequent diagrams of direct interconnects.) However, in
Figure 2.9(b) we’ve divided the nodes into two parts so that four simultaneous com-
munications can take place, so what’s the bisection width? The bisection width is
supposed to give a “worst-case” estimate, so the bisection width is two—not four.

An alternative way of computing the bisection width is to remove the minimum
number of links needed to split the set of nodes into two equal halves. The number of
links removed is the bisection width. If we have a square two-dimensional toroidal
mesh with p= q2 nodes (where q is even), then we can split the nodes into two
halves by removing the “middle” horizontal links and the “wraparound” horizontal
links. See Figure 2.10. This suggests that the bisection width is at most 2q= 2

√
p. In

fact, this is the smallest possible number of links and the bisection width of a square
two-dimensional toroidal mesh is 2

√
p.

The bandwidth of a link is the rate at which it can transmit data. It’s usually
given in megabits or megabytes per second. Bisection bandwidth is often used as
a measure of network quality. It’s similar to bisection width. However, instead of
counting the number of links joining the halves, it sums the bandwidth of the links.
For example, if the links in a ring have a bandwidth of one billion bits per second,
then the bisection bandwidth of the ring will be two billion bits per second or 2000
megabits per second.

The ideal direct interconnect is a fully connected network in which each switch
is directly connected to every other switch. See Figure 2.11. Its bisection width is
p2/4. However, it’s impractical to construct such an interconnect for systems with
more than a few nodes, since it requires a total of p2/2+ p/2 links, and each switch
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FIGURE 2.10

A bisection of a toroidal mesh

must be capable of connecting to p links. It is therefore more a “theoretical best
possible” interconnect than a practical one, and it is used as a basis for evaluating
other interconnects.

FIGURE 2.11

A fully connected network

The hypercube is a highly connected direct interconnect that has been used in
actual systems. Hypercubes are built inductively: A one-dimensional hypercube is a
fully-connected system with two processors. A two-dimensional hypercube is built
from two one-dimensional hypercubes by joining “corresponding” switches. Simi-
larly, a three-dimensional hypercube is built from two two-dimensional hypercubes.
See Figure 2.12. Thus, a hypercube of dimension d has p= 2d nodes, and a switch
in a d-dimensional hypercube is directly connected to a processor and d switches.
The bisection width of a hypercube is p/2, so it has more connectivity than a ring
or toroidal mesh, but the switches must be more powerful, since they must support
1+ d = 1+ log2(p) wires, while the mesh switches only require five wires. So a
hypercube with p nodes is more expensive to construct than a toroidal mesh.
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(a) (b) (c)

FIGURE 2.12

(a) One-, (b) two-, and (c) three-dimensional hypercubes

Indirect interconnects provide an alternative to direct interconnects. In an indi-
rect interconnect, the switches may not be directly connected to a processor. They’re
often shown with unidirectional links and a collection of processors, each of which
has an outgoing and an incoming link, and a switching network. See Figure 2.13.

Switching
Network

FIGURE 2.13

A generic indirect network

The crossbar and the omega network are relatively simple examples of indi-
rect networks. We saw a shared-memory crossbar with bidirectional links earlier
(Figure 2.7). The diagram of a distributed-memory crossbar in Figure 2.14 has unidi-
rectional links. Notice that as long as two processors don’t attempt to communicate
with the same processor, all the processors can simultaneously communicate with
another processor.

An omega network is shown in Figure 2.15. The switches are two-by-two cross-
bars (see Figure 2.16). Observe that unlike the crossbar, there are communications
that cannot occur simultaneously. For example, in Figure 2.15 if processor 0 sends
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FIGURE 2.14

A crossbar interconnect for distributed-memory

a message to processor 6, then processor 1 cannot simultaneously send a message
to processor 7. On the other hand, the omega network is less expensive than the
crossbar. The omega network uses 1

2 p log2(p) of the 2× 2 crossbar switches, so it
uses a total of 2p log2(p) switches, while the crossbar uses p2.

FIGURE 2.15

An omega network
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FIGURE 2.16

A switch in an omega network

It’s a little bit more complicated to define bisection width for indirect networks.
See Exercise 2.14. However, the principle is the same: we want to divide the nodes
into two groups of equal size and determine how much communication can take place
between the two halves, or alternatively, the minimum number of links that need to
be removed so that the two groups can’t communicate. The bisection width of a p× p
crossbar is p and the bisection width of an omega network is p/2.

Latency and bandwidth
Any time data is transmitted, we’re interested in how long it will take for the data
to reach its destination. This is true whether we’re talking about transmitting data
between main memory and cache, cache and register, hard disk and memory, or
between two nodes in a distributed-memory or hybrid system. There are two figures
that are often used to describe the performance of an interconnect (regardless of what
it’s connecting): the latency and the bandwidth. The latency is the time that elapses
between the source’s beginning to transmit the data and the destination’s starting to
receive the first byte. The bandwidth is the rate at which the destination receives data
after it has started to receive the first byte. So if the latency of an interconnect is l
seconds and the bandwidth is b bytes per second, then the time it takes to transmit a
message of n bytes is

message transmission time= l+ n/b.

Beware, however, that these terms are often used in different ways. For example,
latency is sometimes used to describe total message transmission time. It’s also often
used to describe the time required for any fixed overhead involved in transmitting
data. For example, if we’re sending a message between two nodes in a distributed-
memory system, a message is not just raw data. It might include the data to be
transmitted, a destination address, some information specifying the size of the mes-
sage, some information for error correction, and so on. So in this setting, latency
might be the time it takes to assemble the message on the sending side—the time
needed to combine the various parts—and the time to disassemble the message on
the receiving side—the time needed to extract the raw data from the message and
store it in its destination.
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2.3.4 Cache coherence
Recall that CPU caches are managed by system hardware: programmers don’t
have direct control over them. This has several important consequences for
shared-memory systems. To understand these issues, suppose we have a shared-
memory system with two cores, each of which has its own private data cache. See
Figure 2.17. As long as the two cores only read shared data, there is no problem.
For example, suppose that x is a shared variable that has been initialized to 2, y0 is
private and owned by core 0, and y1 and z1 are private and owned by core 1. Now
suppose the following statements are executed at the indicated times:

Time Core 0 Core 1

0 y0 = x; y1 = 3*x;
1 x = 7; Statement(s) not involving x
2 Statement(s) not involving x z1 = 4*x;

Then the memory location for y0 will eventually get the value 2, and the memory
location for y1 will eventually get the value 6. However, it’s not so clear what value
z1 will get. It might at first appear that since core 0 updates x to 7 before the assign-
ment to z1, z1 will get the value 4× 7= 28. However, at time 0, x is in the cache of
core 1. So unless for some reason x is evicted from core 0’s cache and then reloaded
into core 1’s cache, it actually appears that the original value x = 2 may be used, and
z1 will get the value 4× 2= 8.

Core 0

Cache 0

Interconnect

x 2 y1

z1y0

Cache 1

Core 1

FIGURE 2.17

A shared-memory system with two cores and two caches
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Note that this unpredictable behavior will occur regardless of whether the system
is using a write-through or a write-back policy. If it’s using a write-through policy, the
main memory will be updated by the assignment x = 7. However, this will have no
effect on the value in the cache of core 1. If the system is using a write-back policy,
the new value of x in the cache of core 0 probably won’t even be available to core 1
when it updates z1.

Clearly, this is a problem. The programmer doesn’t have direct control over when
the caches are updated, so her program cannot execute these apparently innocu-
ous statements and know what will be stored in z1. There are several problems
here, but the one we want to look at right now is that the caches we described for
single processor systems provide no mechanism for insuring that when the caches
of multiple processors store the same variable, an update by one processor to the
cached variable is “seen” by the other processors. That is, that the cached value
stored by the other processors is also updated. This is called the cache coherence
problem.

Snooping cache coherence
There are two main approaches to insuring cache coherence: snooping cache coher-
ence and directory-based cache coherence. The idea behind snooping comes from
bus-based systems: When the cores share a bus, any signal transmitted on the bus can
be “seen” by all the cores connected to the bus. Thus, when core 0 updates the copy
of x stored in its cache, if it also broadcasts this information across the bus, and if
core 1 is “snooping” the bus, it will see that x has been updated and it can mark its
copy of x as invalid. This is more or less how snooping cache coherence works. The
principal difference between our description and the actual snooping protocol is that
the broadcast only informs the other cores that the cache line containing x has been
updated, not that x has been updated.

A couple of points should be made regarding snooping. First, it’s not essential
that the interconnect be a bus, only that it support broadcasts from each processor to
all the other processors. Second, snooping works with both write-through and write-
back caches. In principle, if the interconnect is shared—as with a bus—with write-
through caches there’s no need for additional traffic on the interconnect, since each
core can simply “watch” for writes. With write-back caches, on the other hand, an
extra communication is necessary, since updates to the cache don’t get immediately
sent to memory.

Directory-based cache coherence
Unfortunately, in large networks broadcasts are expensive, and snooping cache coher-
ence requires a broadcast every time a variable is updated (but see Exercise 2.15).
So snooping cache coherence isn’t scalable, because for larger systems it will cause
performance to degrade. For example, suppose we have a system with the basic
distributed-memory architecture (Figure 2.4). However, the system provides a single
address space for all the memories. So, for example, core 0 can access the vari-
able x stored in core 1’s memory, by simply executing a statement such as y = x.



2.3 Parallel Hardware 45

(Of course, accessing the memory attached to another core will be slower than access-
ing “local” memory, but that’s another story.) Such a system can, in principle, scale
to very large numbers of cores. However, snooping cache coherence is clearly a
problem since a broadcast across the interconnect will be very slow relative to the
speed of accessing local memory.

Directory-based cache coherence protocols attempt to solve this problem
through the use of a data structure called a directory. The directory stores the status
of each cache line. Typically, this data structure is distributed; in our example, each
core/memory pair might be responsible for storing the part of the structure that spec-
ifies the status of the cache lines in its local memory. Thus, when a line is read into,
say, core 0’s cache, the directory entry corresponding to that line would be updated
indicating that core 0 has a copy of the line. When a variable is updated, the directory
is consulted, and the cache controllers of the cores that have that variable’s cache line
in their caches are invalidated.

Clearly there will be substantial additional storage required for the directory, but
when a cache variable is updated, only the cores storing that variable need to be
contacted.

False sharing
It’s important to remember that CPU caches are implemented in hardware, so they
operate on cache lines, not individual variables. This can have disastrous conse-
quences for performance. As an example, suppose we want to repeatedly call a
function f(i,j) and add the computed values into a vector:

int i, j, m, n;
double y[m];

/∗ Assign y = 0 ∗/
. . .

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)

y[i] += f(i,j);

We can parallelize this by dividing the iterations in the outer loop among the cores. If
we have core count cores, we might assign the first m/core count iterations to the
first core, the next m/core count iterations to the second core, and so on.

/∗ Private variables ∗/
int i, j, iter count;

/∗ Shared variables initialized by one core ∗/
int m, n, core count
double y[m];

iter count = m/core count

/∗ Core 0 does this ∗/



46 CHAPTER 2 Parallel Hardware and Parallel Software

for (i = 0; i < iter count; i++)
for (j = 0; j < n; j++)

y[i] += f(i,j);

/∗ Core 1 does this ∗/
for (i = iter count+1; i < 2∗iter count; i++)

for (j = 0; j < n; j++)
y[i] += f(i,j);

. . .

Now suppose our shared-memory system has two cores, m = 8, doubles are eight
bytes, cache lines are 64 bytes, and y[0] is stored at the beginning of a cache line.
A cache line can store eight doubles, and y takes one full cache line. What hap-
pens when core 0 and core 1 simultaneously execute their codes? Since all of y
is stored in a single cache line, each time one of the cores executes the statement
y[i] += f(i,j), the line will be invalidated, and the next time the other core tries to
execute this statement it will have to fetch the updated line from memory! So if n is
large, we would expect that a large percentage of the assignments y[i] += f(i,j)
will access main memory—in spite of the fact that core 0 and core 1 never access each
others’ elements of y. This is called false sharing, because the system is behaving as
if the elements of y were being shared by the cores.

Note that false sharing does not cause incorrect results. However, it can ruin the
performance of a program by causing many more accesses to memory than necessary.
We can reduce its effect by using temporary storage that is local to the thread or
process and then copying the temporary storage to the shared storage. We’ll return to
the subject of false sharing in Chapters 4 and 5.

2.3.5 Shared-memory versus distributed-memory
Newcomers to parallel computing sometimes wonder why all MIMD systems aren’t
shared-memory, since most programmers find the concept of implicitly coordinat-
ing the work of the processors through shared data structures more appealing than
explicitly sending messages. There are several issues, some of which we’ll discuss
when we talk about software for distributed- and shared-memory. However, the prin-
cipal hardware issue is the cost of scaling the interconnect. As we add processors to
a bus, the chance that there will be conflicts over access to the bus increase dramat-
ically, so buses are suitable for systems with only a few processors. Large crossbars
are very expensive, so it’s also unusual to find systems with large crossbar intercon-
nects. On the other hand, distributed-memory interconnects such as the hypercube
and the toroidal mesh are relatively inexpensive, and distributed-memory systems
with thousands of processors that use these and other interconnects have been built.
Thus, distributed-memory systems are often better suited for problems requiring vast
amounts of data or computation.



2.4 Parallel Software 47

2.4 PARALLEL SOFTWARE
Parallel hardware has arrived. Virtually all desktop and server systems use multicore
processors. The same cannot be said for parallel software. Except for operating sys-
tems, database systems, and Web servers, there is currently very little commodity
software that makes extensive use of parallel hardware. As we noted in Chapter 1,
this is a problem because we can no longer rely on hardware and compilers to provide
a steady increase in application performance. If we’re to continue to have routine
increases in application performance and application power, software developers
must learn to write applications that exploit shared- and distributed-memory archi-
tectures. In this section we’ll take a look at some of the issues involved in writing
software for parallel systems.

First, some terminology. Typically when we run our shared-memory programs,
we’ll start a single process and fork multiple threads. So when we discuss shared-
memory programs, we’ll talk about threads carrying out tasks. On the other hand,
when we run distributed-memory programs, we’ll start multiple processes, and we’ll
talk about processes carrying out tasks. When the discussion applies equally well to
shared-memory and distributed-memory systems, we’ll talk about processes/threads
carrying out tasks.

2.4.1 Caveats
Before proceeding, we need to stress some of the limitations of this section. First,
here, and in the remainder of the book, we’ll only be discussing software for MIMD
systems. For example, while the use of GPUs as a platform for parallel computing
continues to grow at a rapid pace, the application programming interfaces (APIs) for
GPUs are necessarily very different from standard MIMD APIs. Second, we stress
that our coverage is only meant to give some idea of the issues: there is no attempt to
be comprehensive.

Finally, we’ll mainly focus on what’s often called single program, multiple data,
or SPMD, programs. Instead of running a different program on each core, SPMD
programs consist of a single executable that can behave as if it were multiple different
programs through the use of conditional branches. For example,

if (I’m thread/process 0)
do this;

else
do that;

Observe that SPMD programs can readily implement data-parallelism. For
example,

if (I’m thread/process 0)
operate on the first half of the array;

else /∗ I’m thread/process 1 ∗/
operate on the second half of the array;
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Recall that a program is task parallel if it obtains its parallelism by dividing tasks
among the threads or processes. The first example makes it clear that SPMD programs
can also implement task-parallelism.

2.4.2 Coordinating the processes/threads
In a very few cases, obtaining excellent parallel performance is trivial. For example,
suppose we have two arrays and we want to add them:

double x[n], y[n];
. . .
for (int i = 0; i < n; i++)

x[i] += y[i];

In order to parallelize this, we only need to assign elements of the arrays to the
processes/threads. For example, if we have p processes/threads, we might make
process/thread 0 responsible for elements 0, . . . ,n/p− 1, process/thread 1 would be
responsible for elements n/p, . . . ,2n/p− 1, and so on.

So for this example, the programmer only needs to

1. Divide the work among the processes/threads
a. in such a way that each process/thread gets roughly the same amount of work,

and
b. in such a way that the amount of communication required is minimized.

Recall that the process of dividing the work among the processes/threads so that
(a) is satisfied is called load balancing. The two qualifications on dividing the
work are obvious, but nonetheless important. In many cases it won’t be necessary
to give much thought to them; they typically become concerns in situations in
which the amount of work isn’t known in advance by the programmer, but rather
the work is generated as the program runs. For an example, see the tree search
problem in Chapter 6.

Although we might wish for a term that’s a little easier to pronounce, recall
that the process of converting a serial program or algorithm into a parallel pro-
gram is often called parallelization. Programs that can be parallelized by simply
dividing the work among the processes/threads are sometimes said to be embar-
rassingly parallel. This is a bit unfortunate, since it suggests that programmers
should be embarrassed to have written an embarrassingly parallel program, when,
to the contrary, successfully devising a parallel solution to any problem is a cause
for great rejoicing.

Alas, the vast majority of problems are much more determined to resist our
efforts to find a parallel solution. As we saw in Chapter 1, for these problems, we
need to coordinate the work of the processes/threads. In these programs, we also
usually need to

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among the processes/threads.

These last two problems are often interrelated. For example, in distributed-memory
programs, we often implicitly synchronize the processes by communicating among
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them, and in shared-memory programs, we often communicate among the threads by
synchronizing them. We’ll say more about both issues below.

2.4.3 Shared-memory
As we noted earlier, in shared-memory programs, variables can be shared or private.
Shared variables can be read or written by any thread, and private variables can ordi-
narily only be accessed by one thread. Communication among the threads is usually
done through shared variables, so communication is implicit, rather than explicit.

Dynamic and static threads
In many environments shared-memory programs use dynamic threads. In this
paradigm, there is often a master thread and at any given instant a (possibly empty)
collection of worker threads. The master thread typically waits for work requests—
for example, over a network—and when a new request arrives, it forks a worker
thread, the thread carries out the request, and when the thread completes the work,
it terminates and joins the master thread. This paradigm makes efficient use of sys-
tem resources since the resources required by a thread are only being used while the
thread is actually running.

An alternative to the dynamic paradigm is the static thread paradigm. In this
paradigm, all of the threads are forked after any needed setup by the master thread
and the threads run until all the work is completed. After the threads join the master
thread, the master thread may do some cleanup (e.g., free memory) and then it also
terminates. In terms of resource usage, this may be less efficient: if a thread is idle,
its resources (e.g., stack, program counter, and so on.) can’t be freed. However, fork-
ing and joining threads can be fairly time-consuming operations. So if the necessary
resources are available, the static thread paradigm has the potential for better perfor-
mance than the dynamic paradigm. It also has the virtue that it’s closer to the most
widely used paradigm for distributed-memory programming, so part of the mindset
that is used for one type of system is preserved for the other. Hence, we’ll often use
the static thread paradigm.

Nondeterminism
In any MIMD system in which the processors execute asynchronously it is likely
that there will be nondeterminism. A computation is nondeterministic if a given
input can result in different outputs. If multiple threads are executing independently,
the relative rate at which they’ll complete statements varies from run to run, and
hence the results of the program may be different from run to run. As a very simple
example, suppose we have two threads, one with id or rank 0 and the other with
id or rank 1. Suppose also that each is storing a private variable my x, thread 0’s
value for my x is 7, and thread 1’s is 19. Further, suppose both threads execute the
following code:

. . .
printf("Thread %d > my val = %d\n", my rank, my x);
. . .
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Then the output could be

Thread 0 > my val = 7
Thread 1 > my val = 19

but it could also be

Thread 1 > my val = 19
Thread 0 > my val = 7

In fact, things could be even worse: the output of one thread could be broken up by
the output of the other thread. However, the point here is that because the threads are
executing independently and interacting with the operating system, the time it takes
for one thread to complete a block of statements varies from execution to execution,
so the order in which these statements complete can’t be predicted.

In many cases nondeterminism isn’t a problem. In our example, since we’ve
labelled the output with the thread’s rank, the order in which the output appears prob-
ably doesn’t matter. However, there are also many cases in which nondeterminism—
especially in shared-memory programs—can be disastrous, because it can easily
result in program errors. Here’s a simple example with two threads.

Suppose each thread computes an int, which it stores in a private variable my val.
Suppose also that we want to add the values stored in my val into a shared-memory
location x that has been initialized to 0. Both threads therefore want to execute code
that looks something like this:

my val = Compute val(my rank);
x += my val;

Now recall that an addition typically requires loading the two values to be added into
registers, adding the values, and finally storing the result. To keep things relatively
simple, we’ll assume that values are loaded from main memory directly into registers
and stored in main memory directly from registers. Here is one possible sequence of
events:

Time Core 0 Core 1

0 Finish assignment to my val In call to Compute val
1 Load x = 0 into register Finish assignment to my val
2 Load my val = 7 into register Load x = 0 into register
3 Add my val = 7 to x Load my val = 19 into register
4 Store x = 7 Add my val to x
5 Start other work Store x = 19

Clearly this is not what we want, and it’s easy to imagine other sequences of
events that result in an incorrect value for x. The nondeterminism here is a result of
the fact that two threads are attempting to more or less simultaneously update the
memory location x. When threads or processes attempt to simultaneously access a
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resource, and the accesses can result in an error, we often say the program has a race
condition, because the threads or processes are in a “horse race.” That is, the out-
come of the computation depends on which thread wins the race. In our example,
the threads are in a race to execute x += my val. In this case, unless one thread com-
pletes x += my val before the other thread starts, the result will be incorrect. A block
of code that can only be executed by one thread at a time is called a critical section,
and it’s usually our job as programmers to insure mutually exclusive access to the
critical section. In other words, we need to insure that if one thread is executing the
code in the critical section, then the other threads are excluded.

The most commonly used mechanism for insuring mutual exclusion is a mutual
exclusion lock or mutex or lock. A mutex is a special type of object that has support
in the underlying hardware. The basic idea is that each critical section is protected by
a lock. Before a thread can execute the code in the critical section, it must “obtain”
the mutex by calling a mutex function, and, when it’s done executing the code in the
critical section, it should “relinquish” the mutex by calling an unlock function. While
one thread “owns” the lock—that is, has returned from a call to the lock function,
but hasn’t yet called the unlock function—any other thread attempting to execute the
code in the critical section will wait in its call to the lock function.

Thus, in order to insure that our code functions correctly, we might modify it so
that it looks something like this:

my val = Compute val(my rank);
Lock(&add my val lock);
x += my val;
Unlock(&add my val lock);

This insures that only one thread at a time can execute the statement x += my val.
Note that the code does not impose any predetermined order on the threads. Either
thread 0 or thread 1 can execute x += my val first.

Also note that the use of a mutex enforces serialization of the critical section.
Since only one thread at a time can execute the code in the critical section, this code is
effectively serial. Thus, we want our code to have as few critical sections as possible,
and we want our critical sections to be as short as possible.

There are alternatives to mutexes. In busy-waiting, a thread enters a loop whose
sole purpose is to test a condition. In our example, suppose there is a shared variable
ok for 1 that has been initialized to false. Then something like the following code
can insure that thread 1 won’t update x until after thread 0 has updated it:

my val = Compute val(my rank);
if (my rank == 1)

while (!ok for 1); /∗ Busy−wait loop ∗/
x += my val; /∗ Critical section ∗/
if (my rank == 0)

ok for 1 = true; /∗ Let thread 1 update x ∗/

So until thread 0 executes ok for 1 = true, thread 1 will be stuck in the loop
while (!ok for 1). This loop is called a “busy-wait” because the thread can be
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very busy waiting for the condition. This has the virtue that it’s simple to understand
and implement. However, it can be very wasteful of system resources, because even
when a thread is doing no useful work, the core running the thread will be repeat-
edly checking to see if the critical section can be entered. Semaphores are similar
to mutexes, although the details of their behavior are slightly different, and there are
some types of thread synchronization that are easier to implement with semaphores
than mutexes. A monitor provides mutual exclusion at a somewhat higher-level: it is
an object whose methods can only be executed by one thread at a time. We’ll discuss
busy-waiting and semaphores in Chapter 4.

There are a number of other alternatives that are currently being studied but that
are not yet widely available. The one that has attracted the most attention is probably
transactional memory [31]. In database management systems, a transaction is an
access to a database that the system treats as a single unit. For example, transferring
$1000 from your savings account to your checking account should be treated by your
bank’s software as a transaction, so that the software can’t debit your savings account
without also crediting your checking account. If the software was able to debit your
savings account, but was then unable to credit your checking account, it would roll-
back the transaction. In other words, the transaction would either be fully completed
or any partial changes would be erased. The basic idea behind transactional memory
is that critical sections in shared-memory programs should be treated as transactions.
Either a thread successfully completes the critical section or any partial results are
rolled back and the critical section is repeated.

Thread safety
In many, if not most, cases parallel programs can call functions developed for use in
serial programs, and there won’t be any problems. However, there are some notable
exceptions. The most important exception for C programmers occurs in functions that
make use of static local variables. Recall that ordinary C local variables—variables
declared inside a function—are allocated from the system stack. Since each thread
has its own stack, ordinary C local variables are private. However, recall that a static
variable that’s declared in a function persists from one call to the next. Thus, static
variables are effectively shared among any threads that call the function, and this can
have unexpected and unwanted consequences.

For example, the C string library function strtok splits an input string into sub-
strings. When it’s first called, it’s passed a string, and on subsequent calls it returns
successive substrings. This can be arranged through the use of a static char∗ variable
that refers to the string that was passed on the first call. Now suppose two threads
are splitting strings into substrings. Clearly, if, for example, thread 0 makes its first
call to strtok, and then thread 1 makes its first call to strtok before thread 0 has
completed splitting its string, then thread 0’s string will be lost or overwritten, and,
on subsequent calls it may get substrings of thread 1’s strings.

A function such as strtok is not thread safe. This means that if it is used in
a multithreaded program, there may be errors or unexpected results. When a block
of code isn’t thread safe, it’s usually because different threads are accessing shared
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data. Thus, as we’ve seen, even though many serial functions can be used safely in
multithreaded programs—that is, they’re thread safe—programmers need to be wary
of functions that were written exclusively for use in serial programs. We’ll take a
closer look at thread safety in Chapters 4 and 5.

2.4.4 Distributed-memory
In distributed-memory programs, the cores can directly access only their own, private
memories. There are several APIs that are used. However, by far the most widely
used is message-passing. So we’ll devote most of our attention in this section to
message-passing. Then we’ll take a brief look at at a couple of other, less widely
used, APIs.

Perhaps the first thing to note regarding distributed-memory APIs is that they can
be used with shared-memory hardware. It’s perfectly feasible for programmers to
logically partition shared-memory into private address spaces for the various threads,
and a library or compiler can implement the communication that’s needed.

As we noted earlier, distributed-memory programs are usually executed by start-
ing multiple processes rather than multiple threads. This is because typical “threads
of execution” in a distributed-memory program may run on independent CPUs with
independent operating systems, and there may be no software infrastructure for start-
ing a single “distributed” process and having that process fork one or more threads
on each node of the system.

Message-passing
A message-passing API provides (at a minimum) a send and a receive function. Pro-
cesses typically identify each other by ranks in the range 0,1, . . . , p− 1, where p is
the number of processes. So, for example, process 1 might send a message to process
0 with the following pseudo-code:

char message[100];
. . .
my rank = Get rank();
if (my rank == 1) {

sprintf(message, "Greetings from process 1");
Send(message, MSG CHAR, 100, 0);

} else if (my rank == 0) {
Receive(message, MSG CHAR, 100, 1);
printf("Process 0 > Received: %s\n", message);

}

Here the Get rank function returns the calling process’ rank. Then the processes
branch depending on their ranks. Process 1 creates a message with sprintf from
the standard C library and then sends it to process 0 with the call to Send. The
arguments to the call are, in order, the message, the type of the elements in the mes-
sage (MSG CHAR), the number of elements in the message (100), and the rank of the
destination process (0). On the other hand, process 0 calls Receive with the follow-
ing arguments: the variable into which the message will be received (message), the
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type of the message elements, the number of elements available for storing the mes-
sage, and the rank of the process sending the message. After completing the call to
Receive, process 0 prints the message.

Several points are worth noting here. First note that the program segment is
SPMD. The two processes are using the same executable, but carrying out differ-
ent actions. In this case, what they do depends on their ranks. Second, note that
the variable message refers to different blocks of memory on the different pro-
cesses. Programmers often stress this by using variable names such as my message
or local message. Finally, note that we’re assuming that process 0 can write to
stdout. This is usually the case: most implementations of message-passing APIs
allow all processes access to stdout and stderr—even if the API doesn’t explicitly
provide for this. We’ll talk a little more about I/O later on.

There are several possibilities for the exact behavior of the Send and Receive
functions, and most message-passing APIs provide several different send and/or
receive functions. The simplest behavior is for the call to Send to block until the
call to Receive starts receiving the data. This means that the process calling Send
won’t return from the call until the matching call to Receive has started. Alterna-
tively, the Send function may copy the contents of the message into storage that it
owns, and then it will return as soon as the data is copied. The most common behav-
ior for the Receive function is for the receiving process to block until the message is
received. There are other possibilities for both Send and Receive, and we’ll discuss
some of them in Chapter 3.

Typical message-passing APIs also provide a wide variety of additional func-
tions. For example, there may be functions for various “collective” communications,
such as a broadcast, in which a single process transmits the same data to all
the processes, or a reduction, in which results computed by the individual pro-
cesses are combined into a single result—for example, values computed by the
processes are added. There may also be special functions for managing processes and
communicating complicated data structures. The most widely used API for message-
passing is the Message-Passing Interface or MPI. We’ll take a closer look at it in
Chapter 3.

Message-passing is a very powerful and versatile API for developing parallel pro-
grams. Virtually all of the programs that are run on the most powerful computers in
the world use message-passing. However, it is also very low level. That is, there is a
huge amount of detail that the programmer needs to manage. For example, in order to
parallelize a serial program, it is usually necessary to rewrite the vast majority of the
program. The data structures in the program may have to either be replicated by each
process or be explicitly distributed among the processes. Furthermore, the rewriting
usually can’t be done incrementally. For example, if a data structure is used in many
parts of the program, distributing it for the parallel parts and collecting it for the serial
(unparallelized) parts will probably be prohibitively expensive. Therefore, message-
passing is sometimes called “the assembly language of parallel programming,” and
there have been many attempts to develop other distributed-memory APIs.
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One-sided communication
In message-passing, one process, must call a send function and the send must be
matched by another process’ call to a receive function. Any communication requires
the explicit participation of two processes. In one-sided communication, or remote
memory access, a single process calls a function, which updates either local mem-
ory with a value from another process or remote memory with a value from the
calling process. This can simplify communication, since it only requires the active
participation of a single process. Furthermore, it can significantly reduce the cost of
communication by eliminating the overhead associated with synchronizing two pro-
cesses. It can also reduce overhead by eliminating the overhead of one of the function
calls (send or receive).

It should be noted that some of these advantages may be hard to realize in prac-
tice. For example, if process 0 is copying a value into the memory of process 1, 0
must have some way of knowing when it’s safe to copy, since it will overwrite some
memory location. Process 1 must also have some way of knowing when the mem-
ory location has been updated. The first problem can be solved by synchronizing the
two processes before the copy, and the second problem can be solved by another
synchronization or by having a “flag” variable that process 0 sets after it has com-
pleted the copy. In the latter case, process 1 may need to poll the flag variable in
order to determine that the new value is available. That is, it must repeatedly check
the flag variable until it gets the value indicating 0 has completed its copy. Clearly,
these problems can considerably increase the overhead associated with transmitting
a value. A further difficulty is that since there is no explicit interaction between the
two processes, remote memory operations can introduce errors that are very hard to
track down.

Partitioned global address space languages
Since many programmers find shared-memory programming more appealing than
message-passing or one-sided communication, a number of groups are developing
parallel programming languages that allow the user to use some shared-memory tech-
niques for programming distributed-memory hardware. This isn’t quite as simple as
it sounds. If we simply wrote a compiler that treated the collective memories in a
distributed-memory system as a single large memory, our programs would have poor,
or, at best, unpredictable performance, since each time a running process accessed
memory, it might access local memory—that is, memory belonging to the core on
which it was executing—or remote memory, memory belonging to another core.
Accessing remote memory can take hundreds or even thousands of times longer than
accessing local memory. As an example, consider the following pseudo-code for a
shared-memory vector addition:

shared int n = . . . ;
shared double x[n], y[n];
private int i, my first element, my last element;
my first element = . . . ;
my last element = . . . ;
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/∗ Initialize x and y ∗/
. . .

for (i = my first element; i <= my last element; i++)
x[i] += y[i];

We first declare two shared arrays. Then, on the basis of the process’ rank, we
determine which elements of the array “belong” to which process. After initializ-
ing the arrays, each process adds its assigned elements. If the assigned elements of
x and y have been allocated so that the elements assigned to each process are in
the memory attached to the core the process is running on, then this code should
be very fast. However, if, for example, all of x is assigned to core 0 and all of y
is assigned to core 1, then the performance is likely to be terrible, since each time
the assignment x[i] += y[i] is executed, the process will need to refer to remote
memory.

Partitioned global address space, or PGAS, languages provide some of the
mechanisms of shared-memory programs. However, they provide the programmer
with tools to avoid the problem we just discussed. Private variables are allocated in
the local memory of the core on which the process is executing, and the distribu-
tion of the data in shared data structures is controlled by the programmer. So, for
example, she knows which elements of a shared array are in which process’ local
memory.

There are a number of research projects currently working on the development of
PGAS languages. See, for example, [7, 9, 45].

2.4.5 Programming hybrid systems
Before moving on, we should note that it is possible to program systems such as
clusters of multicore processors using a combination of a shared-memory API on
the nodes and a distributed-memory API for internode communication. However,
this is usually only done for programs that require the highest possible levels of
performance, since the complexity of this “hybrid” API makes program develop-
ment extremely difficult. See, for example, [40]. Rather, such systems are usually
programmed using a single, distributed-memory API for both inter- and intra-node
communication.

2.5 INPUT AND OUTPUT
We’ve generally avoided the issue of input and output. There are a couple of rea-
sons. First and foremost, parallel I/O, in which multiple cores access multiple disks
or other devices, is a subject to which one could easily devote a book. See, for
example, [35]. Second, the vast majority of the programs we’ll develop do very
little in the way of I/O. The amount of data they read and write is quite small and
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easily managed by the standard C I/O functions printf, fprintf, scanf, and
fscanf. However, even the limited use we make of these functions can potentially
cause some problems. Since these functions are part of standard C, which is a serial
language, the standard says nothing about what happens when they’re called by dif-
ferent processes. On the other hand, threads that are forked by a single process do
share stdin, stdout, and stderr. However, (as we’ve seen), when multiple threads
attempt to access one of these, the outcome is nondeterministic, and it’s impossible
to predict what will happen.

When we call printf from multiple processes, we, as developers, would like
the output to appear on the console of a single system, the system on which we
started the program. In fact, this is what the vast majority of systems do. However,
there is no guarantee, and we need to be aware that it is possible for a system to do
something else, for example, only one process has access to stdout or stderr or
even no processes have access to stdout or stderr.

What should happen with calls to scanf when we’re running multiple processes
is a little less obvious. Should the input be divided among the processes? Or should
only a single process be allowed to call scanf? The vast majority of systems allow
at least one process to call scanf—usually process 0—while some allow more pro-
cesses. Once again, there are some systems that don’t allow any processes to call
scanf.

When multiple processes can access stdout, stderr, or stdin, as you might
guess, the distribution of the input and the sequence of the output are usually nonde-
terministic. For output, the data will probably appear in a different order each time
the program is run, or, even worse, the output of one process may be broken up by the
output of another process. For input, the data read by each process may be different
on each run, even if the same input is used.

In order to partially address these issues, we’ll be making these assumptions and
following these rules when our parallel programs need to do I/O:

. In distributed-memory programs, only process 0 will access stdin. In shared-
memory programs, only the master thread or thread 0 will access stdin.. In both distributed-memory and shared-memory programs, all the processes/
threads can access stdout and stderr.. However, because of the nondeterministic order of output to stdout, in most cases
only a single process/thread will be used for all output to stdout. The principal
exception will be output for debugging a program. In this situation, we’ll often
have multiple processes/threads writing to stdout.. Only a single process/thread will attempt to access any single file other than
stdin, stdout, or stderr. So, for example, each process/thread can open its
own, private file for reading or writing, but no two processes/threads will open the
same file.. Debug output should always include the rank or id of the process/thread that’s
generating the output.
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2.6 PERFORMANCE
Of course our main purpose in writing parallel programs is usually increased perfor-
mance. So what can we expect? And how can we evaluate our programs?

2.6.1 Speedup and efficiency
Usually the best we can hope to do is to equally divide the work among the cores,
while at the same time introducing no additional work for the cores. If we succeed
in doing this, and we run our program with p cores, one thread or process on each
core, then our parallel program will run p times faster than the serial program. If we
call the serial run-time Tserial and our parallel run-time Tparallel, then the best we can
hope for is Tparallel = Tserial/p. When this happens, we say that our parallel program
has linear speedup.

In practice, we’re unlikely to get linear speedup because the use of multiple
processes/threads almost invariably introduces some overhead. For example, shared-
memory programs will almost always have critical sections, which will require
that we use some mutual exclusion mechanism such as a mutex. The calls to the
mutex functions are overhead that’s not present in the serial program, and the use of
the mutex forces the parallel program to serialize execution of the critical section.
Distributed-memory programs will almost always need to transmit data across the
network, which is usually much slower than local memory access. Serial programs,
on the other hand, won’t have these overheads. Thus, it will be very unusual for us
to find that our parallel programs get linear speedup. Furthermore, it’s likely that the
overheads will increase as we increase the number of processes or threads, that is,
more threads will probably mean more threads need to access a critical section. More
processes will probably mean more data needs to be transmitted across the network.

So if we define the speedup of a parallel program to be

S=
Tserial

Tparallel
,

then linear speedup has S= p, which is unusual. Furthermore, as p increases, we
expect S to become a smaller and smaller fraction of the ideal, linear speedup p.
Another way of saying this is that S/p will probably get smaller and smaller as p
increases. Table 2.4 shows an example of the changes in S and S/p as p increases.1

This value, S/p, is sometimes called the efficiency of the parallel program. If we
substitute the formula for S, we see that the efficiency is

E =
S

p
=

(
Tserial

Tparallel

)
p

=
Tserial

p ·Tparallel
.

1These data are taken from Chapter 3. See Tables 3.6 and 3.7.
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Table 2.4 Speedups and Efficiencies
of a Parallel Program

p 1 2 4 8 16

S 1.0 1.9 3.6 6.5 10.8
E= S/p 1.0 0.95 0.90 0.81 0.68

Table 2.5 Speedups and Efficiencies of a
Parallel Program on Different Problem Sizes

p 1 2 4 8 16

Half S 1.0 1.9 3.1 4.8 6.2
E 1.0 0.95 0.78 0.60 0.39

Original S 1.0 1.9 3.6 6.5 10.8
E 1.0 0.95 0.90 0.81 0.68

Double S 1.0 1.9 3.9 7.5 14.2
E 1.0 0.95 0.98 0.94 0.89

It’s clear that Tparallel, S, and E depend on p, the number of processes or threads.
We also need to keep in mind that Tparallel, S, E, and Tserial all depend on the problem
size. For example, if we halve and double the problem size of the program whose
speedups are shown in Table 2.4, we get the speedups and efficiencies shown in
Table 2.5. The speedups are plotted in Figure 2.18, and the efficiencies are plotted in
Figure 2.19.

We see that in this example, when we increase the problem size, the speedups and
the efficiencies increase, while they decrease when we decrease the problem size.
This behavior is quite common. Many parallel programs are developed by dividing
the work of the serial program among the processes/threads and adding in the nec-
essary “parallel overhead” such as mutual exclusion or communication. Therefore, if
Toverhead denotes this parallel overhead, it’s often the case that

Tparallel = Tserial/p+Toverhead.

Furthermore, as the problem size is increased, Toverhead often grows more slowly
than Tserial. When this is the case the speedup and the efficiency will increase. See
Exercise 2.16. This is what your intuition should tell you: there’s more work for the
processes/threads to do, so the relative amount of time spent coordinating the work
of the processes/threads should be less.

A final issue to consider is what values of Tserial should be used when report-
ing speedups and efficiencies. Some authors say that Tserial should be the run-time
of the fastest program on the fastest processor available. In practice, most authors
use a serial program on which the parallel program was based and run it on a single
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processor of the parallel system. So if we were studying the performance of a par-
allel shell sort program, authors in the first group might use a serial radix sort or
quicksort on a single core of the fastest system available, while authors in the second
group would use a serial shell sort on a single processor of the parallel system. We’ll
generally use the second approach.

2.6.2 Amdahl’s law
Back in the 1960s, Gene Amdahl made an observation [2] that’s become known as
Amdahl’s law. It says, roughly, that unless virtually all of a serial program is paral-
lelized, the possible speedup is going to be very limited—regardless of the number of
cores available. Suppose, for example, that we’re able to parallelize 90% of a serial
program. Further suppose that the parallelization is “perfect,” that is, regardless of
the number of cores p we use, the speedup of this part of the program will be p. If
the serial run-time is Tserial= 20 seconds, then the run-time of the parallelized part
will be 0.9×Tserial/p= 18/p and the run-time of the “unparallelized” part will be
0.1×Tserial = 2. The overall parallel run-time will be

Tparallel = 0.9×Tserial/p+ 0.1×Tserial = 18/p+ 2,

and the speedup will be

S=
Tserial

0.9×Tserial/p+ 0.1×Tserial
=

20

18/p+ 2
.

Now as p gets larger and larger, 0.9×Tserial/p= 18/p gets closer and closer to 0, so
the total parallel run-time can’t be smaller than 0.1×Tserial = 2. That is, the denom-
inator in S can’t be smaller than 0.1×Tserial = 2. The fraction S must therefore be
smaller than

S ≤
Tserial

0.1×Tserial
=

20

2
= 10.

That is, S ≤ 10. This is saying that even though we’ve done a perfect job in paral-
lelizing 90% of the program, and even if we have, say, 1000 cores, we’ll never get a
speedup better than 10.

More generally, if a fraction r of our serial program remains unparallelized, then
Amdahl’s law says we can’t get a speedup better than 1/r. In our example, r = 1−
0.9= 1/10, so we couldn’t get a speedup better than 10. Therefore, if a fraction r
of our serial program is “inherently serial,” that is, cannot possibly be parallelized,
then we can’t possibly get a speedup better than 1/r. Thus, even if r is quite small—
say 1/100—and we have a system with thousands of cores, we can’t possibly get a
speedup better than 100.

This is pretty daunting. Should we give up and go home? Well, no. There are
several reasons not to be too worried by Amdahl’s law. First, it doesn’t take into con-
sideration the problem size. For many problems, as we increase the problem size,
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the “inherently serial” fraction of the program decreases in size; a more mathemat-
ical version of this statement is known as Gustafson’s law [25]. Second, there are
thousands of programs used by scientists and engineers that routinely obtain huge
speedups on large distributed-memory systems. Finally, is a small speedup so awful?
In many cases, obtaining a speedup of 5 or 10 is more than adequate, especially if the
effort involved in developing the parallel program wasn’t very large.

2.6.3 Scalability
The word “scalable” has a wide variety of informal uses. Indeed, we’ve used it
several times already. Roughly speaking, a technology is scalable if it can handle
ever-increasing problem sizes. However, in discussions of parallel program perfor-
mance, scalability has a somewhat more formal definition. Suppose we run a parallel
program with a fixed number of processes/threads and a fixed input size, and we
obtain an efficiency E. Suppose we now increase the number of processes/threads
that are used by the program. If we can find a corresponding rate of increase in
the problem size so that the program always has efficiency E, then the program is
scalable.

As an example, suppose that Tserial = n, where the units of Tserial are in microsec-
onds, and n is also the problem size. Also suppose that Tparallel = n/p+ 1. Then

E =
n

p(n/p+ 1)
=

n

n+ p
.

To see if the program is scalable, we increase the number of processes/threads by a
factor of k, and we want to find the factor x that we need to increase the problem
size by so that E is unchanged. The number of processes/threads will be kp and the
problem size will be xn, and we want to solve the following equation for x:

E =
n

n+ p
=

xn

xn+ kp
.

Well, if x= k, there will be a common factor of k in the denominator xn+ kp=
kn+ kp= k(n+ p), and we can reduce the fraction to get

xn

xn+ kp
=

kn

k(n+ p)
=

n

n+ p
.

In other words, if we increase the problem size at the same rate that we increase the
number of processes/threads, then the efficiency will be unchanged, and our program
is scalable.

There are a couple of cases that have special names. If when we increase the
number of processes/threads, we can keep the efficiency fixed without increasing the
problem size, the program is said to be strongly scalable. If we can keep the efficiency
fixed by increasing the problem size at the same rate as we increase the number of
processes/threads, then the program is said to be weakly scalable. The program in our
example would be weakly scalable.
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2.6.4 Taking timings
You may have been wondering how we find Tserial and Tparallel. There are a lot of
different approaches, and with parallel programs the details may depend on the API.
However, there are a few general observations we can make that may make things a
little easier.

The first thing to note is that there are at least two different reasons for taking tim-
ings. During program development we may take timings in order to determine if the
program is behaving as we intend. For example, in a distributed-memory program we
might be interested in finding out how much time the processes are spending waiting
for messages, because if this value is large, there is almost certainly something wrong
either with our design or our implementation. On the other hand, once we’ve com-
pleted development of the program, we’re often interested in determining how good
its performance is. Perhaps surprisingly, the way we take these two timings is usually
different. For the first timing, we usually need very detailed information: How much
time did the program spend in this part of the program? How much time did it spend
in that part? For the second, we usually report a single value. Right now we’ll talk
about the second type of timing. See Exercise 2.22 for a brief discussion of some
issues in taking the first type of timing.

Second, we’re usually not interested in the time that elapses between the pro-
gram’s start and the program’s finish. We’re usually interested only in some part of
the program. For example, if we write a program that implements bubble sort, we’re
probably only interested in the time it takes to sort the keys, not the time it takes
to read them in and print them out. We probably can’t use something like the Unix
shell command time, which reports the time taken to run a program from start to
finish.

Third, we’re usually not interested in “CPU time.” This is the time reported by the
standard C function clock. It’s the total time the program spends in code executed
as part of the program. It would include the time for code we’ve written; it would
include the time we spend in library functions such as pow or sin; and it would
include the time the operating system spends in functions we call, such as printf
and scanf. It would not include time the program was idle, and this could be a prob-
lem. For example, in a distributed-memory program, a process that calls a receive
function may have to wait for the sending process to execute the matching send, and
the operating system might put the receiving process to sleep while it waits. This idle
time wouldn’t be counted as CPU time, since no function that’s been called by the
process is active. However, it should count in our evaluation of the overall run-time,
since it may be a real cost in our program. If each time the program is run, the process
has to wait, ignoring the time it spends waiting would give a misleading picture of
the actual run-time of the program.

Thus, when you see an article reporting the run-time of a parallel program, the
reported time is usually “wall clock” time. That is, the authors of the article report
the time that has elapsed between the start and finish of execution of the code that the
user is interested in. If the user could see the execution of the program, she would
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hit the start button on her stopwatch when it begins execution and hit the stop button
when it stops execution. Of course, she can’t see her code executing, but she can
modify the source code so that it looks something like this:

double start, finish;
. . .
start = Get current time();
/∗ Code that we want to time ∗/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish−start);

The function Get current time() is a hypothetical function that’s supposed to
return the number of seconds that have elapsed since some fixed time in the past.
It’s just a placeholder. The actual function that is used will depend on the API. For
example, MPI has a function MPI Wtime that could be used here, and the OpenMP
API for shared-memory programming has a function omp get wtime. Both functions
return wall clock time instead of CPU time.

There may be an issue with the resolution of the timer function. The resolution is
the unit of measurement on the timer. It’s the duration of the shortest event that can
have a nonzero time. Some timer functions have resolutions in milliseconds (10−3

seconds), and when instructions can take times that are less than a nanosecond (10−9

seconds), a program may have to execute millions of instructions before the timer
reports a nonzero time. Many APIs provide a function that reports the resolution of
the timer. Other APIs specify that a timer must have a given resolution. In either case
we, as the programmers, need to check these values.

When we’re timing parallel programs, we need to be a little more careful about
how the timings are taken. In our example, the code that we want to time is probably
being executed by multiple processes or threads and our original timing will result in
the output of p elapsed times.

private double start, finish;
. . .
start = Get current time();
/∗ Code that we want to time ∗/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish−start);

However, what we’re usually interested in is a single time: the time that has elapsed
from when the first process/thread began execution of the code to the time the last
process/thread finished execution of the code. We often can’t obtain this exactly, since
there may not be any correspondence between the clock on one node and the clock
on another node. We usually settle for a compromise that looks something like this:

shared double global elapsed;
private double my start, my finish, my elapsed;
. . .
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/∗ Synchronize all processes/threads ∗/
Barrier();
my start = Get current time();

/∗ Code that we want to time ∗/
. . .

my finish = Get current time();
my elapsed = my finish − my start;

/∗ Find the max across all processes/threads ∗/
global elapsed = Global max(my elapsed);
if (my rank == 0)

printf("The elapsed time = %e seconds\n", global elapsed);

Here, we first execute a barrier function that approximately synchronizes all of the
processes/threads. We would like for all the processes/threads to return from the call
simultaneously, but such a function usually can only guarantee that all the process-
es/threads have started the call when the first process/thread returns. We then execute
the code as before and each process/thread finds the time it took. Then all the process-
es/threads call a global maximum function, which returns the largest of the elapsed
times, and process/thread 0 prints it out.

We also need to be aware of the variability in timings. When we run a program
several times, it’s extremely likely that the elapsed time will be different for each
run. This will be true even if each time we run the program we use the same input
and the same systems. It might seem that the best way to deal with this would be to
report either a mean or a median run-time. However, it’s unlikely that some outside
event could actually make our program run faster than its best possible run-time.
So instead of reporting the mean or median time, we usually report the minimum
time.

Running more than one thread per core can cause dramatic increases in the
variability of timings. More importantly, if we run more than one thread per core,
the system will have to take extra time to schedule and deschedule cores, and this
will add to the overall run-time. Therefore, we rarely run more than one thread per
core.

Finally, as a practical matter, since our programs won’t be designed for high-
performance I/O, we’ll usually not include I/O in our reported run-times.

2.7 PARALLEL PROGRAM DESIGN
So we’ve got a serial program. How do we parallelize it? We know that in general
we need to divide the work among the processes/threads so that each process gets
roughly the same amount of work and communication is minimized. In most cases,
we also need to arrange for the processes/threads to synchronize and communicate.
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Unfortunately, there isn’t some mechanical process we can follow; if there were, we
could write a program that would convert any serial program into a parallel program,
but, as we noted in Chapter 1, in spite of a tremendous amount of work and some
progress, this seems to be a problem that has no universal solution.

However, Ian Foster provides an outline of steps in his online book Designing
and Building Parallel Programs [19]:

1. Partitioning. Divide the computation to be performed and the data operated on by
the computation into small tasks. The focus here should be on identifying tasks
that can be executed in parallel.

2. Communication. Determine what communication needs to be carried out among
the tasks identified in the previous step.

3. Agglomeration or aggregation. Combine tasks and communications identified in
the first step into larger tasks. For example, if task A must be executed before task
B can be executed, it may make sense to aggregate them into a single composite
task.

4. Mapping. Assign the composite tasks identified in the previous step to processes/
threads. This should be done so that communication is minimized, and each
process/thread gets roughly the same amount of work.

This is sometimes called Foster’s methodology.

2.7.1 An example
Let’s look at a small example. Suppose we have a program that generates large quan-
tities of floating point data that it stores in an array. In order to get some feel for the
distribution of the data, we can make a histogram of the data. Recall that to make
a histogram, we simply divide the range of the data up into equal sized subinter-
vals, or bins, determine the number of measurements in each bin, and plot a bar
graph showing the relative sizes of the bins. As a very small example, suppose our
data are

1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9.

Then the data lie in the range 0–5, and if we choose to have five bins, the histogram
might look something like Figure 2.20.

A serial program
It’s pretty straightforward to write a serial program that generates a histogram. We
need to decide what the bins are, determine the number of measurements in each
bin, and print the bars of the histogram. Since we’re not focusing on I/O, we’ll limit
ourselves to just the first two steps, so the input will be

1. the number of measurements, data count;
2. an array of data count floats, data;
3. the minimum value for the bin containing the smallest values, min meas;
4. the maximum value for the bin containing the largest values, max meas;
5. the number of bins, bin count;
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A histogram

The output will be an array containing the number of elements of data that lie in each
bin. To make things precise, we’ll make use of the following data structures:

− bin maxes. An array of bin count floats
− bin counts. An array of bin count ints

The array bin maxes will store the upper bound for each bin, and bin counts will
store the number of data elements in each bin. To be explicit, we can define

bin width = (max meas − min meas)/bin count

Then bin maxes will be initialized by

for (b = 0; b < bin count; b++)
bin maxes[b] = min meas + bin width∗(b+1);

We’ll adopt the convention that bin b will be all the measurements in the range

bin maxes[b−1] <= measurement < bin maxes[b]

Of course, this doesn’t make sense if b= 0, and in this case we’ll use the rule that
bin 0 will be the measurements in the range

min meas <= measurement < bin maxes[0]

This means we always need to treat bin 0 as a special case, but this isn’t too onerous.
Once we’ve initialized bin maxes and assigned 0 to all the elements of

bin counts, we can get the counts by using the following pseudo-code:

for (i = 0; i < data count; i++) {
bin = Find bin(data[i], bin maxes, bin count, min meas);
bin counts[bin]++;

}

The Find bin function returns the bin that data[i] belongs to. This could be a
simple linear search function: search through bin maxes until you find a bin b that
satisfies

bin maxes[b−1] <= data[i] < bin maxes[b]
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(Here we’re thinking of bin maxes[−1] as min meas.) This will be fine if there aren’t
very many bins, but if there are a lot of bins, binary search will be much better.

Parallelizing the serial program
If we assume that data count is much larger than bin count, then even if we use
binary search in the Find bin function, the vast majority of the work in this code will
be in the loop that determines the values in bin counts. The focus of our paralleliza-
tion should therefore be on this loop, and we’ll apply Foster’s methodology to it. The
first thing to note is that the outcomes of the steps in Foster’s methodology are by no
means uniquely determined, so you shouldn’t be surprised if at any stage you come
up with something different.

For the first step we might identify two types of tasks: finding the bin to which an
element of data belongs and incrementing the appropriate entry in bin counts.

For the second step, there must be a communication between the computation
of the appropriate bin and incrementing an element of bin counts. If we represent
our tasks with ovals and communications with arrows, we’ll get a diagram that looks
something like that shown in Figure 2.21. Here, the task labelled with “data[i]”
is determining which bin the value data[i] belongs to, and the task labelled with
“bin counts[b]++” is incrementing bin counts[b].

For any fixed element of data, the tasks “find the bin b for element of data” and
“increment bin counts[b]” can be aggregated, since the second can only happen
once the first has been completed.

However, when we proceed to the final or mapping step, we see that if two pro-
cesses or threads are assigned elements of data that belong to the same bin b, they’ll
both result in execution of the statement bin counts[b]++. If bin counts[b] is
shared (e.g., the array bin counts is stored in shared-memory), then this will result
in a race condition. If bin counts has been partitioned among the processes/threads,
then updates to its elements will require communication. An alternative is to store
multiple “local” copies of bin counts and add the values in the local copies after all
the calls to Find bin.

If the number of bins, bin count, isn’t absolutely gigantic, there shouldn’t be a
problem with this. So let’s pursue this alternative, since it is suitable for use on both
shared- and distributed-memory systems.

In this setting, we need to update our diagram so that the second collection of
tasks increments loc bin cts[b]. We also need to add a third collection of tasks,
adding the various loc bin cts[b] to get bin counts[b]. See Figure 2.22. Now we

data[i] data[i + 1]

bin_counts[b – 1]++ bin_counts[b]++

data[i – 1]Find_bin

Increment
bin_counts

FIGURE 2.21

The first two stages of Foster’s methodology
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loc_bin_cts[b – 1]++ loc_bin_cts[b]++

bin_counts[b – 1]+= bin_counts[b]+=

loc_bin_cts[b]++

data[i] data[i + 1] data[i + 2]data[i – 1]Find_bin

loc_bin_cts[b – 1]++

FIGURE 2.22

Alternative definition of tasks and communication

see that if we create an array loc bin cts for each process/thread, then we can map
the tasks in the first two groups as follows:

1. Elements of data are assigned to the processes/threads so that each process/thread
gets roughly the same number of elements.

2. Each process/thread is responsible for updating its loc bin cts array on the basis
of its assigned elements.

To finish up, we need to add the elements loc bin cts[b] into bin counts[b].
If both the number of processes/threads is small and the number of bins is small, all
of the additions can be assigned to a single process/thread. If the number of bins is
much larger than the number of processes/threads, we can divide the bins among the
processes/threads in much the same way that we divided the elements of data. If the
number of processes/threads is large, we can use a tree-structured global sum similar
to the one we discussed in Chapter 1. The only difference is that now the sending pro-
cess/threads are sending an array, and the receiving process/threads are receiving and
adding an array. Figure 2.23 shows an example with eight processes/threads. Each
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FIGURE 2.23

Adding the local arrays
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circle in the top row corresponds to a process/thread. Between the first and the
second rows, the odd-numbered processes/threads make their loc bin cts available
to the even-numbered processes/threads. Then in the second row, the even-numbered
processes/threads add the new counts to their existing counts. Between the sec-
ond and third rows the process is repeated with the processes/threads whose ranks
aren’t divisible by four sending to those whose are. This process is repeated until
process/thread 0 has computed bin counts.

2.8 WRITING AND RUNNING PARALLEL PROGRAMS
In the past, virtually all parallel program development was done using a text edi-
tor such as vi or Emacs, and the program was either compiled and run from the
command line or from within the editor. Debuggers were also typically started from
the command line. Now there are also integrated development environments (IDEs)
available from Microsoft, the Eclipse project, and others; see [16, 38].

In smaller shared-memory systems, there is a single running copy of the operat-
ing system, which ordinarily schedules the threads on the available cores. On these
systems, shared-memory programs can usually be started using either an IDE or the
command line. Once started, the program will typically use the console and the key-
board for input from stdin and output to stdout and stderr. On larger systems,
there may be a batch scheduler, that is, a user requests a certain number of cores, and
specifies the path to the executable and where input and output should go (typically
to files in secondary storage).

In typical distributed-memory and hybrid systems, there is a host computer that
is responsible for allocating nodes among the users. Some systems are purely batch
systems, which are similar to shared-memory batch systems. Others allow users to
check out nodes and run jobs interactively. Since job startup often involves com-
municating with remote systems, the actual startup is usually done with a script.
For example, MPI programs are usually started with a script called mpirun or
mpiexec.

As usual, RTFD, which is sometimes translated as “read the fine documentation.”

2.9 ASSUMPTIONS
As we noted earlier, we’ll be focusing on homogeneous MIMD systems—systems in
which all of the nodes have the same architecture—and our programs will be SPMD.
Thus, we’ll write a single program that can use branching to have multiple different
behaviors. We’ll assume the cores are identical but that they operate asynchronously.
We’ll also assume that we always run at most one process or thread of our program
on a single core, and we’ll often use static processes or threads. In other words, we’ll
often start all of our processes or threads at more or less the same time, and when
they’re done executing, we’ll terminate them at more or less the same time.
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Some application programming interfaces or APIs for parallel systems define new
programming languages. However, most extend existing languages, either through a
library of functions—for example, functions to pass messages—or extensions to the
compiler for the serial language. This latter approach will be the focus of this text.
We’ll be using parallel extensions to the C language.

When we want to be explicit about compiling and running programs, we’ll use
the command line of a Unix shell, the gcc compiler or some extension of it (e.g.,
mpicc), and we’ll start programs from the command line. For example, if we wanted
to show compilation and execution of the “hello, world” program from Kernighan
and Ritchie [29], we might show something like this:

$ gcc −g −Wall −o hello hello.c
$ ./hello
hello, world

The $-sign is the prompt from the shell. We will usually use the following options for
the compiler:

. −g. Create information that allows us to use a debugger. −Wall. Issue lots of warnings. −o <outfile>. Put the executable in the file named outfile. When we’re timing programs, we usually tell the compiler to optimize the code
by using the −O2 option.

In most systems, user directories or folders are not, by default, in the user’s execution
path, so we’ll usually start jobs by giving the path to the executable by adding ./ to
its name.

2.10 SUMMARY
There’s a lot of material in this chapter, and a complete summary would run on for
many pages, so we’ll be very terse.

2.10.1 Serial systems
We started with a discussion of conventional serial hardware and software. The stan-
dard model of computer hardware has been the von Neumann architecture, which
consists of a central processing unit that carries out the computations, and main
memory that stores data and instructions. The separation of CPU and memory is
often called the von Neumann bottleneck since it limits the rate at which instructions
can be executed.

Perhaps the most important software on a computer is the operating system.
It manages the computer’s resources. Most modern operating systems are multi-
tasking. Even if the hardware doesn’t have multiple processors or cores, by rapidly
switching among executing programs, the OS creates the illusion that multiple jobs
are running simultaneously. A running program is called a process. Since a running
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process is more or less autonomous, it has a lot of associated data and information.
A thread is started by a process. A thread doesn’t need as much associated data and
information, and threads can be stopped and started much faster than processes.

In computer science, caches are memory locations that can be accessed faster
than other memory locations. CPU caches are memory locations that are intermediate
between the CPU registers and main memory. Their purpose is to reduce the delays
associated with accessing main memory. Data are stored in cache using the principle
of locality, that is, items that are close to recently accessed items are more likely to be
accessed in the near future. Thus, contiguous blocks or lines of data and instructions
are transferred between main memory and caches. When an instruction or data item
is accessed and it’s already in cache, it’s called a cache hit. If the item isn’t in cache,
it’s called a cache miss. Caches are directly managed by the computer hardware, so
programmers can only indirectly control caching.

Main memory can also function as a cache for secondary storage. This is man-
aged by the hardware and the operating system through virtual memory. Rather
than storing all of a program’s instructions and data in main memory, only the active
parts are stored in main memory, and the remaining parts are stored in secondary
storage called swap space. Like CPU caches, virtual memory operates on blocks
of contiguous data and instructions, which in this setting are called pages. Note
that instead of addressing the memory used by a program with physical addresses,
virtual memory uses virtual addresses, which are independent of actual physical
addresses. The correspondence between physical addresses and virtual addresses is
stored in main memory in a page table. The combination of virtual addresses and
a page table provides the system with the flexibility to store a program’s data and
instructions anywhere in memory. Thus, it won’t matter if two different programs
use the same virtual addresses. With the page table stored in main memory, it could
happen that every time a program needed to access a main memory location it would
need two memory accesses: one to get the appropriate page table entry so it could
find the location in main memory, and one to actually access the desired mem-
ory. In order to avoid this problem, CPUs have a special page table cache called
the translation lookaside buffer, which stores the most recently used page table
entries.

Instruction-level parallelism (ILP) allows a single processor to execute multiple
instructions simultaneously. There are two main types of ILP: pipelining and multi-
ple issue. With pipelining, some of the functional units of a processor are ordered in
sequence, with the output of one being the input to the next. Thus, while one piece
of data is being processed by, say, the second functional unit, another piece of data
can be processed by the first. With multiple issue, the functional units are replicated,
and the processor attempts to simultaneously execute different instructions in a single
program.

Rather than attempting to simultaneously execute individual instructions, hard-
ware multithreading attempts to simultaneously execute different threads. There are
several different approaches to implementing hardware multithreading. However, all
of them attempt to keep the processor as busy as possible by rapidly switching
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between threads. This is especially important when a thread stalls and has to wait
(e.g., for a memory access to complete) before it can execute an instruction. In simul-
taneous multithreading, the different threads can simultaneously use the multiple
functional units in a multiple issue processor. Since threads consist of multiple instruc-
tions, we sometimes say that thread-level paralleism, or TLP, is coarser-grained
than ILP.

2.10.2 Parallel hardware
ILP and TLP provide parallelism at a very low level; they’re typically controlled by
the processor and the operating system, and their use isn’t directly controlled by the
programmer. For our purposes, hardware is parallel if the parallelism is visible to the
programmer, and she can modify her source code to exploit it.

Parallel hardware is often classified using Flynn’s taxonomy, which distinguishes
between the number of instruction streams and the number of data streams a system
can handle. A von Neumann system has a single instruction stream and a single data
stream so it is classified as a single instruction, single data, or SISD, system.

A single instruction, multiple data, or SIMD, system executes a single instruc-
tion at a time, but the instruction can operate on multiple data items. These systems
often execute their instructions in lockstep: the first instruction is applied to all of
the data elements simultaneously, then the second is applied, and so on. This type of
parallel system is usually employed in data parallel programs, programs in which
the data are divided among the processors and each data item is subjected to more or
less the same sequence of instructions. Vector processors and graphics processing
units are often classified as SIMD systems, although current generation GPUs also
have characteristics of multiple instruction, multiple data stream systems.

Branching in SIMD systems is handled by idling those processors that might
operate on a data item to which the instruction doesn’t apply. This behavior makes
SIMD systems poorly suited for task-parallelism, in which each processor executes
a different task, or even data-parallelism, with many conditional branches.

As the name suggests, multiple instruction, multiple data, or MIMD, systems
execute multiple independent instruction streams, each of which can have its own
data stream. In practice, MIMD systems are collections of autonomous processors
that can execute at their own pace. The principal distinction between different MIMD
systems is whether they are shared-memory or distributed-memory systems. In
shared-memory systems, each processor or core can directly access every memory
location, while in distributed-memory systems, each processor has its own private
memory. Most of the larger MIMD systems are hybrid systems in which a num-
ber of relatively small shared-memory systems are connected by an interconnection
network. In such systems, the individual shared-memory systems are sometimes
called nodes. Some MIMD systems are heterogeneous systems, in which the pro-
cessors have different capabilities. For example, a system with a conventional CPU
and a GPU is a heterogeneous system. A system in which all the processors have the
same architecture is homogeneous.
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There are a number of different interconnects for joining processors to memory
in shared-memory systems and for interconnecting the processors in distributed-
memory or hybrid systems. The most commonly used interconnects for shared-
memory are buses and crossbars. Distributed-memory systems sometimes use direct
interconnects such as toroidal meshes and hypercubes, and they sometimes use
indirect interconnects such as crossbars and multistage networks. Networks are
often evaluated by examining the bisection width or the bisection bandwidth of
the network. These give measures of how much simultaneous communication the
network can support. For individual communications between nodes, authors often
discuss the latency and bandwidth of the interconnect.

A potential problem with shared-memory systems is cache coherence. The same
variable can be stored in the caches of two different cores, and if one core updates
the value of the variable, the other core may be unaware of the change. There are
two main methods for insuring cache coherence: snooping and the use of directo-
ries. Snooping relies on the capability of the interconnect to broadcast information
from each cache controller to every other cache controller. Directories are special
distributed data structures, which store information on each cache line. Cache coher-
ence introduces another problem for shared-memory programming: false sharing.
When one core updates a variable in one cache line, and another core wants to access
another variable in the same cache line, it will have to access main memory, since
the unit of cache coherence is the cache line. That is, the second core only “knows”
that the line it wants to access has been updated. It doesn’t know that the variable it
wants to access hasn’t been changed.

2.10.3 Parallel software
In this text we’ll focus on developing software for homogeneous MIMD sys-
tems. Most programs for such systems consist of a single program that obtains
parallelism by branching. Such programs are often called single program, mul-
tiple data or SPMD programs. In shared-memory programs we’ll call the
instances of running tasks threads; in distributed-memory programs we’ll call them
processes.

Unless our problem is embarrassingly parallel, the development of a parallel
program needs at a minimum to address the issues of load balance, communication,
and synchronization among the processes or threads.

In shared-memory programs, the individual threads can have private and shared-
memory. Communication is usually done through shared variables. Any time the
processors execute asynchronously, there is the potential for nondeterminism, that
is, for a given input the behavior of the program can change from one run to the
next. This can be a serious problem, especially in shared-memory programs. If the
nondeterminism results from two threads’ attempts to access the same resource, and
it can result in an error, the program is said to have a race condition. The most
common place for a race condition is a critical section, a block of code that can only
be executed by one thread at a time. In most shared-memory APIs, mutual exclusion
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in a critical section can be enforced with an object called a mutual exclusion lock
or mutex. Critical sections should be made as small as possible, since a mutex will
allow only one thread at a time to execute the code in the critical section, effectively
making the code serial.

A second potential problem with shared-memory programs is thread safety.
A block of code that functions correctly when it is run by multiple threads is
said to be thread safe. Functions that were written for use in serial programs can
make unwitting use of shared data—for example, static variables—and this use in a
multithreaded program can cause errors. Such functions are not thread safe.

The most common API for programming distributed-memory systems is
message-passing. In message-passing, there are (at least) two distinct functions: a
send function and a receive function. When processes need to communicate, one calls
the send and the other calls the receive. There are a variety of possible behaviors for
these functions. For example, the send can block or wait until the matching receive
has started, or the message-passing software can can copy the data for the message
into its own storage, and the sending process can return before the matching receive
has started. The most common behavior for receives is to block until the message
has been received. The most commonly used message-passing system is called the
Message-Passing Interface or MPI. It provides a great deal of functionality beyond
simple sends and receives.

Distributed-memory systems can also be programmed using one-sided com-
munications, which provide functions for accessing memory belonging to another
process, and partitioned global address space languages, which provide some
shared-memory functionality in distributed-memory systems.

2.10.4 Input and output
In general parallel systems, multiple cores can access multiple secondary storage
devices. We won’t attempt to write programs that make use of this functionality.
Rather, we’ll write programs in which one process or thread can access stdin, and
all processes can access stdout and stderr. However, because of nondetermin-
ism, except for debug output we’ll usually have a single process or thread accessing
stdout.

2.10.5 Performance
If we run a parallel program with p processes or threads and no more than one pro-
cess/thread per core, then our ideal would be for our parallel program to run p times
faster than the serial program. This is called linear speedup, but in practice it is rarely
achieved. If we denote the run-time of the serial program by Tserial and the parallel
program’s run-time by Tparallel, then the speedup S and efficiency E of the parallel
program are given by the formulas

S=
Tserial

Tparallel
, and E =

Tserial

pTparallel
,
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respectively. So linear speedup has S= p and E = 1. In practice, we will almost
always have S < p and E < 1. If we fix the problem size, E usually decreases as
we increase p, while if we fix the number of processes/threads, then S and E often
increase as we increase the problem size.

Amdahl’s law provides an upper bound on the speedup that can be obtained by
a parallel program: if a fraction r of the original, serial program isn’t parallelized,
then we can’t possibly get a speedup better than 1/r, regardless of how many pro-
cesses/threads we use. In practice many parallel programs obtain excellent speedups.
One possible reason for this apparent contradiction is that Amdahl’s law doesn’t take
into consideration the fact that the unparallelized part often decreases in size relative
to the parallelized part as the problem size increases.

Scalability is a term that has many interpretations. In general, a technology is
scalable if it can handle ever-increasing problem sizes. Formally, a parallel program
is scalable if there is a rate at which the problem size can be increased so that as the
number of processes/threads is increased, the efficiency remains constant. A pro-
gram is strongly scalable, if the problem size can remain fixed, and it’s weakly
scalable if the problem size needs to be increased at the same rate as the number
of processes/threads.

In order to determine Tserial and Tparallel, we usually need to include calls to a
timer function in our source code. We want these timer functions to give wall clock
time, not CPU time, since the program may be “active”—for example, waiting for
a message—even when the CPU is idle. To take parallel times, we usually want
to synchronize the processes/threads before starting the timer, and, after stopping
the timer, find the maximum elapsed time among all the processes/threads. Because
of system variability, we usually need to run a program several times with a given
data set, and we usually take the minimum time from the multiple runs. To reduce
variability and improve overall run-times, we usually run no more than one thread
per core.

2.10.6 Parallel program design
Foster’s methodology provides a sequence of steps that can be used to design par-
allel programs. The steps are partitioning the problem to identify tasks, identifying
communication among the tasks, agglomeration or aggregation to group tasks, and
mapping to assign aggregate tasks to processes/threads.

2.10.7 Assumptions
We’ll be focusing on the development of parallel programs for both shared- and
distributed-memory MIMD systems. We’ll write SPMD programs that usually
use static processes or threads—processes/threads that are created when the pro-
gram begins execution, and are not shut down until the program terminates. We’ll
also assume that we run at most one process or thread on each core of the
system.
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2.11 EXERCISES

2.1. When we were discussing floating point addition, we made the simplifying
assumption that each of the functional units took the same amount of time.
Suppose that fetch and store each take 2 nanoseconds and the remaining
operations each take 1 nanosecond.
a. How long does a floating point addition take with these assumptions?
b. How long will an unpipelined addition of 1000 pairs of floats take with

these assumptions?
c. How long will a pipelined addition of 1000 pairs of floats take with these

assumptions?
d. The time required for fetch and store may vary considerably if the operands/

results are stored in different levels of the memory hierarchy. Suppose that
a fetch from a level 1 cache takes two nanoseconds, while a fetch from a
level 2 cache takes five nanoseconds, and a fetch from main memory takes
fifty nanoseconds. What happens to the pipeline when there is a level 1
cache miss on a fetch of one of the operands? What happens when there
is a level 2 miss?

2.2. Explain how a queue, implemented in hardware in the CPU, could be used to
improve the performance of a write-through cache.

2.3. Recall the example involving cache reads of a two-dimensional array
(page 22). How does a larger matrix and a larger cache affect the performance
of the two pairs of nested loops? What happens if MAX = 8 and the cache can
store four lines? How many misses occur in the reads of A in the first pair of
nested loops? How many misses occur in the second pair?

2.4. In Table 2.2, virtual addresses consist of a byte offset of 12 bits and a virtual
page number of 20 bits. How many pages can a program have if it’s run on a
system with this page size and this virtual address size?

2.5. Does the addition of cache and virtual memory to a von Neumann sys-
tem change its designation as an SISD system? What about the addition of
pipelining? Multiple issue? Hardware multithreading?

2.6. Suppose that a vector processor has a memory system in which it takes 10
cycles to load a single 64-bit word from memory. How many memory banks
are needed so that a stream of loads can, on average, require only one cycle
per load?

2.7. Discuss the differences in how a GPU and a vector processor might execute
the following code:

sum = 0.0;
for (i = 0; i < n; i++) {

y[i] += a∗x[i];
sum += z[i]∗z[i];

}
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2.8. Explain why the performance of a hardware multithreaded processing core
might degrade if it had large caches and it ran many threads.

2.9. In our discussion of parallel hardware, we used Flynn’s taxonomy to identify
three types of parallel systems: SISD, SIMD, and MIMD. None of our systems
were identified as multiple instruction, single data, or MISD. How would an
MISD system work? Give an example.

2.10. Suppose a program must execute 1012 instructions in order to solve a particular
problem. Suppose further that a single processor system can solve the problem
in 106 seconds (about 11.6 days). So, on average, the single processor sys-
tem executes 106 or a million instructions per second. Now suppose that the
program has been parallelized for execution on a distributed-memory system.
Suppose also that if the parallel program uses p processors, each processor will
execute 1012/p instructions and each processor must send 109(p− 1) mes-
sages. Finally, suppose that there is no additional overhead in executing the
parallel program. That is, the program will complete after each processor has
executed all of its instructions and sent all of its messages, and there won’t be
any delays due to things such as waiting for messages.
a. Suppose it takes 10−9 seconds to send a message. How long will it take

the program to run with 1000 processors, if each processor is as fast as the
single processor on which the serial program was run?

b. Suppose it takes 10−3 seconds to send a message. How long will it take the
program to run with 1000 processors?

2.11. Derive formulas for the total number of links in the various distributed-
memory interconnects.

2.12. a. A planar mesh is just like a toroidal mesh, except that it doesn’t have
the “wraparound” links. What is the bisection width of a square planar
mesh?

b. A three-dimensional mesh is similar to a planar mesh, except that it also
has depth. What is the bisection width of a three-dimensional mesh?

2.13. a. Sketch a four-dimensional hypercube.
b. Use the inductive definition of a hypercube to explain why the bisection

width of a hypercube is p/2.

2.14. To define the bisection width for indirect networks, the processors are par-
titioned into two groups so that each group has half the processors. Then,
links are removed from anywhere in the network so that the two groups are
no longer connected. The minimum number of links removed is the bisection
width. When we count links, if the diagram uses unidirectional links, two uni-
directional links count as one link. Show that an eight-by-eight crossbar has a
bisection width less than or equal to eight. Also show that an omega network
with eight processors has a bisection width less than or equal to four.



2.11 Exercises 79

2.15. a. Suppose a shared-memory system uses snooping cache coherence and
write-back caches. Also suppose that core 0 has the variable x in its cache,
and it executes the assignment x = 5. Finally suppose that core 1 doesn’t
have x in its cache, and after core 0’s update to x, core 1 tries to execute
y = x. What value will be assigned to y? Why?

b. Suppose that the shared-memory system in the previous part uses a
directory-based protocol. What value will be assigned to y? Why?

c. Can you suggest how any problems you found in the first two parts might
be solved?

2.16. a. Suppose the run-time of a serial program is given by Tserial = n2, where
the units of the run-time are in microseconds. Suppose that a paral-
lelization of this program has run-time Tparallel = n2/p+ log2(p). Write a
program that finds the speedups and efficiencies of this program for vari-
ous values of n and p. Run your program with n= 10,20,40, . . . ,320, and
p= 1,2,4, . . . ,128. What happens to the speedups and efficiencies as p
is increased and n is held fixed? What happens when p is fixed and n is
increased?

b. Suppose that Tparallel = Tserial/p+Toverhead. Also suppose that we fix p and
increase the problem size.
- Show that if Toverhead grows more slowly than Tserial, the parallel

efficiency will increase as we increase the problem size.

- Show that if, on the other hand, Toverhead grows faster than Tserial, the
parallel efficiency will decrease as we increase the problem size.

2.17. A parallel program that obtains a speedup greater than p—the number of pro-
cesses or threads—is sometimes said to have superlinear speedup. However,
many authors don’t count programs that overcome “resource limitations” as
having superlinear speedup. For example, a program that must use secondary
storage for its data when it’s run on a single processor system might be able
to fit all its data into main memory when run on a large distributed-memory
system. Give another example of how a program might overcome a resource
limitation and obtain speedups greater than p.

2.18. Look at three programs you wrote in your Introduction to Computer Science
class. What (if any) parts of these programs are inherently serial? Does the
inherently serial part of the work done by the program decrease as the problem
size increases? Or does it remain roughly the same?

2.19. Suppose Tserial = n and Tparallel = n/p+ log2(p), where times are in microsec-
onds. If we increase p by a factor of k, find a formula for how much we’ll
need to increase n in order to maintain constant efficiency. How much should
we increase n by if we double the number of processes from 8 to 16? Is the
parallel program scalable?

2.20. Is a program that obtains linear speedup strongly scalable? Explain your answer.
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2.21. Bob has a program that he wants to time with two sets of data, input data1
and input data2. To get some idea of what to expect before adding timing
functions to the code he’s interested in, he runs the program with two sets of
data and the Unix shell command time:

$ time ./bobs prog < input data1

real 0m0.001s
user 0m0.001s
sys 0m0.000s
$ time ./bobs prog < input data2

real 1m1.234s
user 1m0.001s
sys 0m0.111s

The timer function Bob is using has millisecond resolution. Should Bob use
it to time his program with the first set of data? What about the second set of
data? Why or why not?

2.22. As we saw in the preceding problem, the Unix shell command time reports the
user time, the system time, and the “real” time or total elapsed time. Suppose
that Bob has defined the following functions that can be called in a C program:

double utime(void);
double stime(void);
double rtime(void);

The first returns the number of seconds of user time that have elapsed since the
program started execution, the second returns the number of system seconds,
and the third returns the total number of seconds. Roughly, user time is time
spent in the user code and library functions that don’t need to use the operating
system—for example, sin and cos. System time is time spent in functions that
do need to use the operating system—for example, printf and scanf.
a. What is the mathematical relation among the three function values? That

is, suppose the program contains the following code:

u = double utime(void);
s = double stime(void);
r = double rtime(void);

Write a formula that expresses the relation between u, s, and r. (You can
assume that the time it takes to call the functions is negligible.)

b. On Bob’s system, any time that an MPI process spends waiting for mes-
sages isn’t counted by either utime or stime, but the time is counted by
rtime. Explain how Bob can use these facts to determine whether an MPI
process is spending too much time waiting for messages.
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c. Bob has given Sally his timing functions. However, Sally has discovered
that on her system, the time an MPI process spends waiting for mes-
sages is counted as user time. Furthermore, sending messages doesn’t use
any system time. Can Sally use Bob’s functions to determine whether an
MPI process is spending too much time waiting for messages? Explain your
answer.

2.23. In our application of Foster’s methodology to the construction of a histogram,
we essentially identified aggregate tasks with elements of data. An apparent
alternative would be to identify aggregate tasks with elements of bin counts,
so an aggregate task would consist of all increments of bin counts[b] and
consequently all calls to Find bin that return b. Explain why this aggregation
might be a problem.

2.24. If you haven’t already done so in Chapter 1, try to write pseudo-code for our
tree-structured global sum, which sums the elements of loc bin cts. First
consider how this might be done in a shared-memory setting. Then consider
how this might be done in a distributed-memory setting. In the shared-memory
setting, which variables are shared and which are private?
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CHAPTER

3Distributed-Memory
Programming with MPI

Recall that the world of parallel multiple instruction, multiple data, or MIMD, com-
puters is, for the most part, divided into distributed-memory and shared-memory
systems. From a programmer’s point of view, a distributed-memory system consists
of a collection of core-memory pairs connected by a network, and the memory asso-
ciated with a core is directly accessible only to that core. See Figure 3.1. On the other
hand, from a programmer’s point of view, a shared-memory system consists of a col-
lection of cores connected to a globally accessible memory, in which each core can
have access to any memory location. See Figure 3.2. In this chapter we’re going to
start looking at how to program distributed-memory systems using message-passing.

Recall that in message-passing programs, a program running on one core-memory
pair is usually called a process, and two processes can communicate by calling func-
tions: one process calls a send function and the other calls a receive function. The
implementation of message-passing that we’ll be using is called MPI, which is an
abbreviation of Message-Passing Interface. MPI is not a new programming lan-
guage. It defines a library of functions that can be called from C, C++, and Fortran
programs. We’ll learn about some of MPI’s different send and receive functions.
We’ll also learn about some “global” communication functions that can involve more
than two processes. These functions are called collective communications. In the pro-
cess of learning about all of these MPI functions, we’ll also learn about some of the
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A distributed-memory system
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A shared-memory system

fundamental issues involved in writing message-passing programs–issues such as
data partitioning and I/O in distributed-memory systems. We’ll also revisit the issue
of parallel program performance.

3.1 GETTING STARTED
Perhaps the first program that many of us saw was some variant of the “hello, world”
program in Kernighan and Ritchie’s classic text [29]:

#include <stdio.h>

int main(void) {
printf("hello, world\n");

return 0;
}

Let’s write a program similar to “hello, world” that makes some use of MPI. Instead
of having each process simply print a message, we’ll designate one process to do the
output, and the other processes will send it messages, which it will print.

In parallel programming, it’s common (one might say standard) for the processes
to be identified by nonnegative integer ranks. So if there are p processes, the pro-
cesses will have ranks 0,1,2, . . . , p− 1. For our parallel “hello, world,” let’s make
process 0 the designated process, and the other processes will send it messages. See
Program 3.1.

3.1.1 Compilation and execution
The details of compiling and running the program depend on your system, so you
may need to check with a local expert. However, recall that when we need to be
explicit, we’ll assume that we’re using a text editor to write the program source, and
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1 #include <stdio.h>
2 #include <string.h> /∗ For strlen ∗/
3 #include <mpi.h> /∗ For MPI functions, etc ∗/
4
5 const int MAX STRING = 100;
6
7 int main(void) {
8 char greeting[MAX STRING];
9 int comm sz; /∗ Number of processes ∗/

10 int my rank; /∗ My process rank ∗/
11
12 MPI Init(NULL, NULL);
13 MPI Comm size(MPI COMM WORLD, &comm sz);
14 MPI Comm rank(MPI COMM WORLD, &my rank);
15
16 if (my rank != 0) {
17 sprintf(greeting, "Greetings from process %d of %d!",
18 my rank, comm sz);
19 MPI Send(greeting, strlen(greeting)+1, MPI CHAR, 0, 0,
20 MPI COMM WORLD);
21 } else {
22 printf("Greetings from process %d of %d!\n", my rank,

comm sz);
23 for (int q = 1; q < comm sz; q++) {
24 MPI Recv(greeting, MAX STRING, MPI CHAR, q,
25 0, MPI COMM WORLD, MPI STATUS IGNORE);
26 printf("%s\n", greeting);
27 }

28 }

29
30 MPI Finalize();
31 return 0;
32 } /∗ main ∗/

Program 3.1: MPI program that prints greetings from the processes

the command line to compile and run. Many systems use a command called mpicc
for compilation:1

$ mpicc −g −Wall −o mpi hello mpi hello.c

Typically, mpicc is a script that’s a wrapper for the C compiler. A wrapper script
is a script whose main purpose is to run some program. In this case, the program
is the C compiler. However, the wrapper simplifies the running of the compiler by
telling it where to find the necessary header files and which libraries to link with the
object file.

1Recall that the dollar sign ($) is the shell prompt, so it shouldn’t be typed in. Also recall that, for
the sake of explicitness, we assume that we’re using the Gnu C compiler, gcc, and we always use the
options -g, -Wall, and -o. See Section 2.9 for further information.
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Many systems also support program startup with mpiexec:

$ mpiexec −n <number of processes> ./mpi hello

So to run the program with one process, we’d type

$ mpiexec −n 1 ./mpi hello

and to run the program with four processes, we’d type

$ mpiexec −n 4 ./mpi hello

With one process the program’s output would be

Greetings from process 0 of 1!

and with four processes the program’s output would be

Greetings from process 0 of 4!
Greetings from process 1 of 4!
Greetings from process 2 of 4!
Greetings from process 3 of 4!

How do we get from invoking mpiexec to one or more lines of greetings? The
mpiexec command tells the system to start <number of processes> instances of
our <mpi hello> program. It may also tell the system which core should run each
instance of the program. After the processes are running, the MPI implementation
takes care of making sure that the processes can communicate with each other.

3.1.2 MPI programs
Let’s take a closer look at the program. The first thing to observe is that this is a C
program. For example, it includes the standard C header files stdio.h and string.h.
It also has a main function just like any other C program. However, there are many
parts of the program which are new. Line 3 includes the mpi.h header file. This
contains prototypes of MPI functions, macro definitions, type definitions, and so on;
it contains all the definitions and declarations needed for compiling an MPI program.

The second thing to observe is that all of the identifiers defined by MPI start with
the string MPI . The first letter following the underscore is capitalized for function
names and MPI-defined types. All of the letters in MPI-defined macros and con-
stants are capitalized, so there’s no question about what is defined by MPI and what’s
defined by the user program.

3.1.3 MPI Init and MPI Finalize
In Line 12 the call to MPI Init tells the MPI system to do all of the necessary setup.
For example, it might allocate storage for message buffers, and it might decide which
process gets which rank. As a rule of thumb, no other MPI functions should be called
before the program calls MPI Init. Its syntax is
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int MPI Init(
int∗ argc p /∗ in/out ∗/,
char∗∗∗ argv p /∗ in/out ∗/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char∗ argv[]) {

. . .
/∗ No MPI calls before this ∗/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/∗ No MPI calls after this ∗/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /∗ in ∗/,
int∗ comm sz p /∗ out ∗/);

int MPI Comm rank(
MPI Comm comm /∗ in ∗/,
int∗ my rank p /∗ out ∗/);
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For both functions, the first argument is a communicator and has the special type
defined by MPI for communicators, MPI Comm. MPI Comm size returns in its second
argument the number of processes in the communicator, and MPI Comm rank returns
in its second argument the calling process’ rank in the communicator. We’ll often
use the variable comm sz for the number of processes in MPI COMM WORLD, and the
variable my rank for the process rank.

3.1.5 SPMD programs
Notice that we compiled a single program—we didn’t compile a different program
for each process—and we did this in spite of the fact that process 0 is doing something
fundamentally different from the other processes: it’s receiving a series of messages
and printing them, while each of the other processes is creating and sending a mes-
sage. This is quite common in parallel programming. In fact, most MPI programs
are written in this way. That is, a single program is written so that different processes
carry out different actions, and this is achieved by simply having the processes branch
on the basis of their process rank. Recall that this approach to parallel programming is
called single program, multiple data, or SPMD. The if−else statement in Lines 16
through 28 makes our program SPMD.

Also notice that our program will, in principle, run with any number of processes.
We saw a little while ago that it can be run with one process or four processes, but if
our system has sufficient resources, we could also run it with 1000 or even 100,000
processes. Although MPI doesn’t require that programs have this property, it’s almost
always the case that we try to write programs that will run with any number of pro-
cesses, because we usually don’t know in advance the exact resources available to
us. For example, we might have a 20-core system available today, but tomorrow we
might have access to a 500-core system.

3.1.6 Communication
In Lines 17 and 18, each process, other than process 0, creates a message it will
send to process 0. (The function sprintf is very similar to printf, except that
instead of writing to stdout, it writes to a string.) Lines 19–20 actually send the
message to process 0. Process 0, on the other hand, simply prints its message using
printf, and then uses a for loop to receive and print the messages sent by pro-
cesses 1,2, . . . ,comm sz− 1. Lines 24–25 receive the message sent by process q, for
q= 1,2, . . . ,comm sz− 1.

3.1.7 MPI Send
The sends executed by processes 1,2, . . . ,comm sz− 1 are fairly complex, so let’s
take a closer look at them. Each of the sends is carried out by a call to MPI Send,
whose syntax is
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int MPI Send(
void∗ msg buf p /∗ in ∗/,
int msg size /∗ in ∗/,
MPI Datatype msg type /∗ in ∗/,
int dest /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm communicator /∗ in ∗/);

The first three arguments, msg buf p, msg size, and msg type, determine the con-
tents of the message. The remaining arguments, dest, tag, and communicator,
determine the destination of the message.

The first argument, msg buf p, is a pointer to the block of memory containing
the contents of the message. In our program, this is just the string containing the
message, greeting. (Remember that in C an array, such as a string, is a pointer.)
The second and third arguments, msg size and msg type, determine the amount of
data to be sent. In our program, the msg size argument is the number of characters in
the message plus one character for the ‘\0’ character that terminates C strings. The
msg type argument is MPI CHAR. These two arguments together tell the system that
the message contains strlen(greeting)+1 chars.

Since C types (int, char, and so on.) can’t be passed as arguments to functions,
MPI defines a special type, MPI Datatype, that is used for the msg type argument.
MPI also defines a number of constant values for this type. The ones we’ll use (and a
few others) are listed in Table 3.1.

Notice that the size of the string greeting is not the same as the size of the mes-
sage specified by the arguments msg size and msg type. For example, when we run
the program with four processes, the length of each of the messages is 31 characters,

Table 3.1 Some Predefined MPI
Datatypes

MPI datatype C datatype

MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI LONG LONG signed long long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED
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while we’ve allocated storage for 100 characters in greetings. Of course, the size
of the message sent should be less than or equal to the amount of storage in the
buffer—in our case the string greeting.

The fourth argument, dest, specifies the rank of the process that should receive
the message. The fifth argument, tag, is a nonnegative int. It can be used to dis-
tinguish messages that are otherwise identical. For example, suppose process 1 is
sending floats to process 0. Some of the floats should be printed, while others should
be used in a computation. Then the first four arguments to MPI Send provide no
information regarding which floats should be printed and which should be used in a
computation. So process 1 can use, say, a tag of 0 for the messages that should be
printed and a tag of 1 for the messages that should be used in a computation.

The final argument to MPI Send is a communicator. All MPI functions that involve
communication have a communicator argument. One of the most important purposes
of communicators is to specify communication universes; recall that a communica-
tor is a collection of processes that can send messages to each other. Conversely, a
message sent by a process using one communicator cannot be received by a process
that’s using a different communicator. Since MPI provides functions for creating new
communicators, this feature can be used in complex programs to insure that messages
aren’t “accidentally received” in the wrong place.

An example will clarify this. Suppose we’re studying global climate change, and
we’ve been lucky enough to find two libraries of functions, one for modeling the
Earth’s atmosphere and one for modeling the Earth’s oceans. Of course, both libraries
use MPI. These models were built independently, so they don’t communicate with
each other, but they do communicate internally. It’s our job to write the interface
code. One problem we need to solve is to insure that the messages sent by one library
won’t be accidentally received by the other. We might be able to work out some
scheme with tags: the atmosphere library gets tags 0,1, . . . ,n− 1 and the ocean library
gets tags n,n+ 1, . . . ,n+m. Then each library can use the given range to figure out
which tag it should use for which message. However, a much simpler solution is
provided by communicators: we simply pass one communicator to the atmosphere
library functions and a different communicator to the ocean library functions.

3.1.8 MPI Recv
The first six arguments to MPI Recv correspond to the first six arguments of
MPI Send:

int MPI Recv(
void∗ msg buf p /∗ out ∗/,
int buf size /∗ in ∗/,
MPI Datatype buf type /∗ in ∗/,
int source /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm communicator /∗ in ∗/,
MPI Status∗ status p /∗ out ∗/);

Thus, the first three arguments specify the memory available for receiving the
message: msg buf p points to the block of memory, buf size determines the
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number of objects that can be stored in the block, and buf type indicates the
type of the objects. The next three arguments identify the message. The source
argument specifies the process from which the message should be received. The
tag argument should match the tag argument of the message being sent, and the
communicator argument must match the communicator used by the sending pro-
cess. We’ll talk about the status p argument shortly. In many cases it won’t be used
by the calling function, and, as in our “greetings” program, the special MPI constant
MPI STATUS IGNORE can be passed.

3.1.9 Message matching
Suppose process q calls MPI Send with

MPI Send(send buf p, send buf sz, send type, dest, send tag,
send comm);

Also suppose that process r calls MPI Recv with

MPI Recv(recv buf p, recv buf sz, recv type, src, recv tag,
recv comm, &status);

Then the message sent by q with the above call to MPI Send can be received by r
with the call to MPI Recv if

. recv comm = send comm,. recv tag = send tag,. dest = r, and. src = q.

These conditions aren’t quite enough for the message to be successfully
received, however. The parameters specified by the first three pairs of arguments,
send buf p/recv buf p, send buf sz/recv buf sz, and send type/recv type,
must specify compatible buffers. For detailed rules, see the MPI-1 specification [39].
Most of the time, the following rule will suffice:

. If recv type = send type and recv buf sz ≥ send buf sz, then the message
sent by q can be successfully received by r.

Of course, it can happen that one process is receiving messages from multiple
processes, and the receiving process doesn’t know the order in which the other pro-
cesses will send the messages. For example, suppose, for example, process 0 is doling
out work to processes 1,2, . . . ,comm sz− 1, and processes 1,2, . . . ,comm sz− 1, send
their results back to process 0 when they finish the work. If the work assigned to each
process takes an unpredictable amount of time, then 0 has no way of knowing the
order in which the processes will finish. If process 0 simply receives the results in
process rank order—first the results from process 1, then the results from process 2,
and so on—and if, say, process comm sz−1 finishes first, it could happen that pro-
cess comm sz−1 could sit and wait for the other processes to finish. In order to avoid
this problem, MPI provides a special constant MPI ANY SOURCE that can be passed to
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MPI Recv. Then, if process 0 executes the following code, it can receive the results
in the order in which the processes finish:

for (i = 1; i < comm sz; i++) {
MPI Recv(result, result sz, result type, MPI ANY SOURCE,

result tag, comm, MPI STATUS IGNORE);
Process result(result);

}

Similarly, it’s possible that one process can be receiving multiple messages with
different tags from another process, and the receiving process doesn’t know the order
in which the messages will be sent. For this circumstance, MPI provides the special
constant MPI ANY TAG that can be passed to the tag argument of MPI Recv.

A couple of points should be stressed in connection with these “wildcard”
arguments:

1. Only a receiver can use a wildcard argument. Senders must specify a process
rank and a nonnegative tag. Thus, MPI uses a “push” communication mechanism
rather than a “pull” mechanism.

2. There is no wildcard for communicator arguments; both senders and receivers
must always specify communicators.

3.1.10 The status p argument
If you think about these rules for a minute, you’ll notice that a receiver can receive a
message without knowing

1. the amount of data in the message,
2. the sender of the message, or
3. the tag of the message.

So how can the receiver find out these values? Recall that the last argument to
MPI Recv has type MPI Status∗. The MPI type MPI Status is a struct with at least
the three members MPI SOURCE, MPI TAG, and MPI ERROR. Suppose our program
contains the definition

MPI Status status;

Then, after a call to MPI Recv in which &status is passed as the last argument, we
can determine the sender and tag by examining the two members

status.MPI SOURCE
status.MPI TAG

The amount of data that’s been received isn’t stored in a field that’s directly
accessible to the application program. However, it can be retrieved with a call to
MPI Get count. For example, suppose that in our call to MPI Recv, the type of the
receive buffer is recv type and, once again, we passed in &status. Then the call

MPI Get count(&status, recv type, &count)
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will return the number of elements received in the count argument. In general, the
syntax of MPI Get count is

int MPI Get count(
MPI Status∗ status p /∗ in ∗/,
MPI Datatype type /∗ in ∗/,
int∗ count p /∗ out ∗/);

Note that the count isn’t directly accessible as a member of the MPI Status
variable simply because it depends on the type of the received data, and, conse-
quently, determining it would probably require a calculation (e.g. (number of bytes
received)/(bytes per object)). If this information isn’t needed, we shouldn’t waste a
calculation determining it.

3.1.11 Semantics of MPI Send and MPI Recv
What exactly happens when we send a message from one process to another? Many
of the details depend on the particular system, but we can make a few generaliza-
tions. The sending process will assemble the message. For example, it will add the
“envelope” information to the actual data being transmitted—the destination process
rank, the sending process rank, the tag, the communicator, and some information
on the size of the message. Once the message has been assembled, recall from
Chapter 2 that there are essentially two possibilities: the sending process can buffer
the message or it can block. If it buffers the message, the MPI system will place the
message (data and envelope) into its own internal storage, and the call to MPI Send
will return.

Alternatively, if the system blocks, it will wait until it can begin transmitting
the message, and the call to MPI Send may not return immediately. Thus, if we use
MPI Send, when the function returns, we don’t actually know whether the message
has been transmitted. We only know that the storage we used for the message, the
send buffer, is available for reuse by our program. If we need to know that the
message has been transmitted, or if we need for our call to MPI Send to return
immediately—regardless of whether the message has been sent—MPI provides alter-
native functions for sending. We’ll learn about one of these alternative functions
later.

The exact behavior of MPI Send is determined by the MPI implementation. How-
ever, typical implementations have a default “cutoff” message size. If the size of a
message is less than the cutoff, it will be buffered. If the size of the message is greater
than the cutoff, MPI Send will block.

Unlike MPI Send, MPI Recv always blocks until a matching message has been
received. Thus, when a call to MPI Recv returns, we know that there is a message
stored in the receive buffer (unless there’s been an error). There is an alternate method
for receiving a message, in which the system checks whether a matching message is
available and returns, regardless of whether there is one. (For more details on the use
of nonblocking communication, see Exercise 6.22.)

MPI requires that messages be nonovertaking. This means that if process q sends
two messages to process r, then the first message sent by q must be available to r
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before the second message. However, there is no restriction on the arrival of mes-
sages sent from different processes. That is, if q and t both send messages to r,
then even if q sends its message before t sends its message, there is no require-
ment that q’s message become available to r before t’s message. This is essentially
because MPI can’t impose performance on a network. For example, if q happens
to be running on a machine on Mars, while r and t are both running on the same
machine in San Francisco, and if q sends its message a nanosecond before t sends
its message, it would be extremely unreasonable to require that q’s message arrive
before t’s.

3.1.12 Some potential pitfalls
Note that the semantics of MPI Recv suggests a potential pitfall in MPI programming:
If a process tries to receive a message and there’s no matching send, then the process
will block forever. That is, the process will hang. When we design our programs, we
therefore need to be sure that every receive has a matching send. Perhaps even more
important, we need to be very careful when we’re coding that there are no inadvertent
mistakes in our calls to MPI Send and MPI Recv. For example, if the tags don’t match,
or if the rank of the destination process is the same as the rank of the source process,
the receive won’t match the send, and either a process will hang, or, perhaps worse,
the receive may match another send.

Similarly, if a call to MPI Send blocks and there’s no matching receive, then the
sending process can hang. If, on the other hand, a call to MPI Send is buffered and
there’s no matching receive, then the message will be lost.

3.2 THE TRAPEZOIDAL RULE IN MPI
Printing messages from processes is all well and good, but we’re probably not tak-
ing the trouble to learn to write MPI programs just to print messages. Let’s take a
look at a somewhat more useful program—let’s write a program that implements the
trapezoidal rule for numerical integration.

3.2.1 The trapezoidal rule
Recall that we can use the trapezoidal rule to approximate the area between the graph
of a function, y= f (x), two vertical lines, and the x-axis. See Figure 3.3. The basic
idea is to divide the interval on the x-axis into n equal subintervals. Then we approxi-
mate the area lying between the graph and each subinterval by a trapezoid whose base
is the subinterval, whose vertical sides are the vertical lines through the endpoints of
the subinterval, and whose fourth side is the secant line joining the points where the
vertical lines cross the graph. See Figure 3.4. If the endpoints of the subinterval are
xi and xi+1, then the length of the subinterval is h= xi+1− xi. Also, if the lengths of
the two vertical segments are f (xi) and f (xi+1), then the area of the trapezoid is

Area of one trapezoid =
h

2
[ f (xi)+ f (xi+1)].
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FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x= a and x= b, then

h=
b− a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a+ h, x2 = a+ 2h, . . . , xn−1 = a+ (n− 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[ f (x0)/2+ f (x1)+ f (x2)+ ·· ·+ f (xn−1)+ f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/∗ Input: a, b, n ∗/
h = (b−a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n−1; i++) {

x i = a + i∗h;
approx += f(x i);

}

approx = h∗approx;

y

f (xi)
y = f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid
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3.2.2 Parallelizing the trapezoidal rule
It is not the most attractive word, but, as we noted in Chapter 1, people who write
parallel programs do use the verb “parallelize” to describe the process of converting
a serial program or algorithm into a parallel program.

Recall that we can design a parallel program using four basic steps:

1. Partition the problem solution into tasks.
2. Identify the communication channels between the tasks.
3. Aggregate the tasks into composite tasks.
4. Map the composite tasks to cores.

In the partitioning phase, we usually try to identify as many tasks as possible. For the
trapezoidal rule, we might identify two types of tasks: one type is finding the area
of a single trapezoid, and the other is computing the sum of these areas. Then the
communication channels will join each of the tasks of the first type to the single task
of the second type. See Figure 3.5.

So how can we aggregate the tasks and map them to the cores? Our intuition tells
us that the more trapezoids we use, the more accurate our estimate will be. That is,
we should use many trapezoids, and we will use many more trapezoids than cores.
Thus, we need to aggregate the computation of the areas of the trapezoids into groups.
A natural way to do this is to split the interval [a,b] up into comm sz subintervals. If
comm sz evenly divides n, the number of trapezoids, we can simply apply the trape-
zoidal rule with n/comm sz trapezoids to each of the comm sz subintervals. To finish,
we can have one of the processes, say process 0, add the estimates.

Let’s make the simplifying assumption that comm sz evenly divides n. Then
pseudo-code for the program might look something like the following:

1 Get a, b, n;
2 h = (b−a)/n;
3 local n = n/comm sz;
4 local a = a + my rank∗local n∗h;
5 local b = local a + local n∗h;
6 local integral = Trap(local a, local b, local n, h);

Add areas

Compute area
of trap 0

Compute area
of trap 1

Compute area
of trap n − 1

FIGURE 3.5

Tasks and communications for the trapezoidal rule
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7 if (my rank != 0)
8 Send local integral to process 0;
9 else /∗ my rank == 0 ∗/

10 total integral = local integral;
11 for (proc = 1; proc < comm sz; proc++) {
12 Receive local integral from proc;
13 total integral += local integral;
14 }

15 }

16 if (my rank == 0)
17 print result;

Let’s defer, for the moment, the issue of input and just “hardwire” the values for a,
b, and n. When we do this, we get the MPI program shown in Program 3.2. The Trap
function is just an implementation of the serial trapezoidal rule. See Program 3.3.

Notice that in our choice of identifiers, we try to differentiate between local and
global variables. Local variables are variables whose contents are significant only on
the process that’s using them. Some examples from the trapezoidal rule program are
local a, local b, and local n. Variables whose contents are significant to all the
processes are sometimes called global variables. Some examples from the trapezoidal
rule are a, b, and n. Note that this usage is different from the usage you learned in your
introductory programming class, where local variables are private to a single function
and global variables are accessible to all the functions. However, no confusion should
arise, since the context will usually make the meaning clear.

3.3 DEALING WITH I/O
Of course, the current version of the parallel trapezoidal rule has a serious deficiency:
it will only compute the integral over the interval [0,3] using 1024 trapezoids. We can
edit the code and recompile, but this is quite a bit of work compared to simply typing
in three new numbers. We need to address the problem of getting input from the user.
While we’re talking about input to parallel programs, it might be a good idea to also
take a look at output. We discussed these two issues in Chapter 2, so if you remember
the discussion of nondeterminism and output, you can skip ahead to Section 3.3.2.

3.3.1 Output
In both the “greetings” program and the trapezoidal rule program we’ve assumed
that process 0 can write to stdout, that is, its calls to printf behave as we might
expect. Although the MPI standard doesn’t specify which processes have access
to which I/O devices, virtually all MPI implementations allow all the processes in
MPI COMM WORLD full access to stdout and stderr, so most MPI implementations
allow all processes to execute printf and fprintf(stderr, ...).

However, most MPI implementations don’t provide any automatic scheduling of
access to these devices. That is, if multiple processes are attempting to write to,
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1 int main(void) {
2 int my rank, comm sz, n = 1024, local n;
3 double a = 0.0, b = 3.0, h, local a, local b;
4 double local int, total int;
5 int source;
6
7 MPI Init(NULL, NULL);
8 MPI Comm rank(MPI COMM WORLD, &my rank);
9 MPI Comm size(MPI COMM WORLD, &comm sz);

10
11 h = (b−a)/n; /∗ h is the same for all processes ∗/
12 local n = n/comm sz; /∗ So is the number of trapezoids ∗/
13
14 local a = a + my rank∗local n∗h;
15 local b = local a + local n∗h;
16 local int = Trap(local a, local b, local n, h);
17
18 if (my rank != 0) {
19 MPI Send(&local int, 1, MPI DOUBLE, 0, 0,
20 MPI COMM WORLD);
21 } else {
22 total int = local int;
23 for (source = 1; source < comm sz; source++) {
24 MPI Recv(&local int, 1, MPI DOUBLE, source, 0,
25 MPI COMM WORLD, MPI STATUS IGNORE);
26 total int += local int;
27 }

28 }

29
30 if (my rank == 0) {
31 printf("With n = %d trapezoids, our estimate\n", n);
32 printf("of the integral from %f to %f = %.15e\n",
33 a, b, total int);
34 }

35 MPI Finalize();
36 return 0;
37 } /∗ main ∗/

Program 3.2: First version of the MPI trapezoidal rule

say, stdout, the order in which the processes’ output appears will be unpredictable.
Indeed, it can even happen that the output of one process will be interrupted by the
output of another process.

For example, suppose we try to run an MPI program in which each process simply
prints a message. See Program 3.4. On our cluster, if we run the program with five
processes, it often produces the “expected” output:

Proc 0 of 5 > Does anyone have a toothpick?
Proc 1 of 5 > Does anyone have a toothpick?
Proc 2 of 5 > Does anyone have a toothpick?



3.3 Dealing with I/O 99

1 double Trap(
2 double left endpt /∗ in ∗/,
3 double right endpt /∗ in ∗/,
4 int trap count /∗ in ∗/,
5 double base len /∗ in ∗/) {
6 double estimate, x;
7 int i;
8
9 estimate = (f(left endpt) + f(right endpt))/2.0;

10 for (i = 1; i <= trap count−1; i++) {
11 x = left endpt + i∗base len;
12 estimate += f(x);
13 }

14 estimate = estimate∗base len;
15
16 return estimate;
17 } /∗ Trap ∗/

Program 3.3: Trap function in the MPI trapezoidal rule

#include <stdio.h>
#include <mpi.h>

int main(void) {
int my rank, comm sz;

MPI Init(NULL, NULL);
MPI Comm size(MPI COMM WORLD, &comm sz);
MPI Comm rank(MPI COMM WORLD, &my rank);

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my rank, comm sz);

MPI Finalize();
return 0;

} /∗ main ∗/

Program 3.4: Each process just prints a message

Proc 3 of 5 > Does anyone have a toothpick?
Proc 4 of 5 > Does anyone have a toothpick?

However, when we run it with six processes, the order of the output lines is
unpredictable:

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?
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Proc 5 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?

or

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 5 of 6 > Does anyone have a toothpick?

The reason this happens is that the MPI processes are “competing” for access to
the shared output device, stdout, and it’s impossible to predict the order in which the
processes’ output will be queued up. Such a competition results in nondeterminism.
That is, the actual output will vary from one run to the next.

In any case, if we don’t want output from different processes to appear in a random
order, it’s up to us to modify our program accordingly. For example, we can have each
process other than 0 send its output to process 0, and process 0 can print the output
in process rank order. This is exactly what we did in the “greetings” program.

3.3.2 Input
Unlike output, most MPI implementations only allow process 0 in MPI COMM WORLD
access to stdin. This makes sense: If multiple processes have access to stdin, which
process should get which parts of the input data? Should process 0 get the first line?
Process 1 the second? Or should process 0 get the first character?

In order to write MPI programs that can use scanf, we need to branch on
process rank, with process 0 reading in the data and then sending it to the other
processes. For example, we might write the Get input function shown in Pro-
gram 3.5 for our parallel trapezoidal rule program. In this function, process 0 simply
reads in the values for a, b, and n and sends all three values to each process. This
function uses the same basic communication structure as the “greetings” program,
except that now process 0 is sending to each process, while the other processes are
receiving.

To use this function, we can simply insert a call to it inside our main function,
being careful to put it after we’ve initialized my rank and comm sz:

. . .
MPI Comm rank(MPI COMM WORLD, &my rank);
MPI Comm size(MPI COMM WORLD, &comm sz);

Get data(my rank, comm sz, &a, &b, &n);

h = (b−a)/n;
. . .
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1 void Get input(
2 int my rank /∗ in ∗/,
3 int comm sz /∗ in ∗/,
4 double∗ a p /∗ out ∗/,
5 double∗ b p /∗ out ∗/,
6 int∗ n p /∗ out ∗/) {
7 int dest;
8
9 if (my rank == 0) {

10 printf("Enter a, b, and n\n");
11 scanf("%lf %lf %d", a p, b p, n p);
12 for (dest = 1; dest < comm sz; dest++) {
13 MPI Send(a p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
14 MPI Send(b p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
15 MPI Send(n p, 1, MPI INT, dest, 0, MPI COMM WORLD);
16 }

17 } else { /∗ my rank != 0 ∗/
18 MPI Recv(a p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
19 MPI STATUS IGNORE);
20 MPI Recv(b p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
21 MPI STATUS IGNORE);
22 MPI Recv(n p, 1, MPI INT, 0, 0, MPI COMM WORLD,
23 MPI STATUS IGNORE);
24 }

25 } /∗ Get input ∗/

Program 3.5: A function for reading user input

3.4 COLLECTIVE COMMUNICATION
If we pause for a moment and think about our trapezoidal rule program, we can find
several things that we might be able to improve on. One of the most obvious is that the
“global sum” after each process has computed its part of the integral. If we hire eight
workers to, say, build a house, we might feel that we weren’t getting our money’s
worth if seven of the workers told the first what to do, and then the seven collected
their pay and went home. But this is very similar to what we’re doing in our global
sum. Each process with rank greater than 0 is “telling process 0 what to do” and then
quitting. That is, each process with rank greater than 0 is, in effect, saying “add this
number into the total.” Process 0 is doing nearly all the work in computing the global
sum, while the other processes are doing almost nothing. Sometimes it does happen
that this is the best we can do in a parallel program, but if we imagine that we have
eight students, each of whom has a number, and we want to find the sum of all eight
numbers, we can certainly come up with a more equitable distribution of the work
than having seven of the eight give their numbers to one of the students and having
the first do the addition.
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3.4.1 Tree-structured communication
As we already saw in Chapter 1 we might use a “binary tree structure” like that
illustrated in Figure 3.6. In this diagram, initially students or processes 1, 3, 5, and
7 send their values to processes 0, 2, 4, and 6, respectively. Then processes 0, 2, 4,
and 6 add the received values to their original values, and the process is repeated
twice:

1. a. Processes 2 and 6 send their new values to processes 0 and 4, respectively.
b. Processes 0 and 4 add the received values into their new values.

2. a. Process 4 sends its newest value to process 0.
b. Process 0 adds the received value to its newest value.

This solution may not seem ideal, since half the processes (1, 3, 5, and 7) are
doing the same amount of work that they did in the original scheme. However, if
you think about it, the original scheme required comm sz− 1= seven receives and
seven adds by process 0, while the new scheme only requires three, and all the other
processes do no more than two receives and adds. Furthermore, the new scheme has
a property by which a lot of the work is done concurrently by different processes.
For example, in the first phase, the receives and adds by processes 0, 2, 4, and 6 can
all take place simultaneously. So, if the processes start at roughly the same time, the
total time required to compute the global sum will be the time required by process
0, that is, three receives and three additions. We’ve thus reduced the overall time by
more than 50%. Furthermore, if we use more processes, we can do even better. For
example, if comm sz= 1024, then the original scheme requires process 0 to do 1023
receives and additions, while it can be shown (Exercise 3.5) that the new scheme
requires process 0 to do only 10 receives and additions. This improves the original
scheme by more than a factor of 100!
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FIGURE 3.6

A tree-structured global sum
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An alternative tree-structured global sum

You may be thinking to yourself, this is all well and good, but coding this tree-
structured global sum looks like it would take a quite a bit of work, and you’d be
right. See Programming Assignment 3.3. In fact, the problem may be even harder.
For example, it’s perfectly feasible to construct a tree-structured global sum that uses
different “process-pairings.” For example, we might pair 0 and 4, 1 and 5, 2 and 6,
and 3 and 7 in the first phase. Then we could pair 0 and 2, and 1 and 3 in the second,
and 0 and 1 in the final. See Figure 3.7. Of course, there are many other possibilities.
How can we decide which is the best? Do we need to code each alternative and
evaluate its performance? If we do, is it possible that one method works best for
“small” trees, while another works best for “large” trees? Even worse, one approach
might work best on system A, while another might work best on system B.

3.4.2 MPI Reduce
With virtually limitless possibilities, it’s unreasonable to expect each MPI pro-
grammer to write an optimal global-sum function, so MPI specifically protects
programmers against this trap of endless optimization by requiring that MPI imple-
mentations include implementations of global sums. This places the burden of
optimization on the developer of the MPI implementation, rather than the applica-
tion developer. The assumption here is that the developer of the MPI implementation
should know enough about both the hardware and the system software so that she can
make better decisions about implementation details.

Now, a “global-sum function” will obviously require communication. However,
unlike the MPI Send-MPI Recv pair, the global-sum function may involve more than
two processes. In fact, in our trapezoidal rule program it will involve all the processes
in MPI COMM WORLD. In MPI parlance, communication functions that involve all the
processes in a communicator are called collective communications. To distinguish
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between collective communications and functions such as MPI Send and MPI Recv,
MPI Send and MPI Recv are often called point-to-point communications.

In fact, global sum is just a special case of an entire class of collective communi-
cations. For example, it might happen that instead of finding the sum of a collection of
comm sz numbers distributed among the processes, we want to find the maximum or
the minimum or the product or any one of many other possibilities. MPI generalized
the global-sum function so that any one of these possibilities can be implemented
with a single function:

int MPI Reduce(
void∗ input data p /∗ in ∗/,
void∗ output data p /∗ out ∗/,
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Op operator /∗ in ∗/,
int dest process /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The key to the generalization is the fifth argument, operator. It has type MPI Op,
which is a predefined MPI type like MPI Datatype and MPI Comm. There are a number
of predefined values in this type. See Table 3.2. It’s also possible to define your own
operators; for details, see the MPI-1 Standard [39].

The operator we want is MPI SUM. Using this value for the operator argument, we
can replace the code in Lines 18 through 28 of Program 3.2 with the single function
call

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

One point worth noting is that by using a count argument greater than 1, MPI Reduce
can operate on arrays instead of scalars. The following code could thus be used to

Table 3.2 Predefined Reduction Operators in MPI

Operation Value Meaning

MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum



3.4 Collective Communication 105

add a collection of N-dimensional vectors, one per process:

double local x[N], sum[N];
. . .
MPI Reduce(local x, sum, N, MPI DOUBLE, MPI SUM, 0,

MPI COMM WORLD);

3.4.3 Collective vs. point-to-point communications
It’s important to remember that collective communications differ in several ways
from point-to-point communications:

1. All the processes in the communicator must call the same collective function. For
example, a program that attempts to match a call to MPI Reduce on one process
with a call to MPI Recv on another process is erroneous, and, in all likelihood, the
program will hang or crash.

2. The arguments passed by each process to an MPI collective communication must
be “compatible.” For example, if one process passes in 0 as the dest process
and another passes in 1, then the outcome of a call to MPI Reduce is erroneous,
and, once again, the program is likely to hang or crash.

3. The output data p argument is only used on dest process. However, all
of the processes still need to pass in an actual argument corresponding to
output data p, even if it’s just NULL.

4. Point-to-point communications are matched on the basis of tags and communica-
tors. Collective communications don’t use tags, so they’re matched solely on the
basis of the communicator and the order in which they’re called. As an example,
consider the calls to MPI Reduce shown in Table 3.3. Suppose that each pro-
cess calls MPI Reduce with operator MPI SUM, and destination process 0. At first
glance, it might seem that after the two calls to MPI Reduce, the value of b will be
three, and the value of d will be six. However, the names of the memory locations
are irrelevant to the matching, of the calls to MPI Reduce. The order of the calls
will determine the matching, so the value stored in b will be 1+ 2+ 1= 4, and
the value stored in d will be 2+ 1+ 2= 5.

A final caveat: it might be tempting to call MPI Reduce using the same buffer for
both input and output. For example, if we wanted to form the global sum of x on each
process and store the result in x on process 0, we might try calling

MPI Reduce(&x, &x, 1, MPI DOUBLE, MPI SUM, 0, comm);

Table 3.3 Multiple Calls to MPI Reduce

Time Process 0 Process 1 Process 2

0 a = 1; c = 2 a = 1; c = 2 a = 1; c = 2

1 MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...)

2 MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...)
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However, this call is illegal in MPI, so its result will be unpredictable: it might pro-
duce an incorrect result, it might cause the program to crash, it might even produce
a correct result. It’s illegal because it involves aliasing of an output argument. Two
arguments are aliased if they refer to the same block of memory, and MPI prohibits
aliasing of arguments if one of them is an output or input/output argument. This is
because the MPI Forum wanted to make the Fortran and C versions of MPI as sim-
ilar as possible, and Fortran prohibits aliasing. In some instances, MPI provides an
alternative construction that effectively avoids this restriction. See Section 6.1.9 for
an example.

3.4.4 MPI Allreduce
In our trapezoidal rule program, we just print the result, so it’s perfectly natural for
only one process to get the result of the global sum. However, it’s not difficult to
imagine a situation in which all of the processes need the result of a global sum in
order to complete some larger computation. In this situation, we encounter some of
the same problems we encountered with our original global sum. For example, if we
use a tree to compute a global sum, we might “reverse” the branches to distribute
the global sum (see Figure 3.8). Alternatively, we might have the processes exchange
partial results instead of using one-way communications. Such a communication pat-
tern is sometimes called a butterfly (see Figure 3.9). Once again, we don’t want to
have to decide on which structure to use, or how to code it for optimal performance.
Fortunately, MPI provides a variant of MPI Reduce that will store the result on all the
processes in the communicator:

int MPI Allreduce(
void∗ input data p /∗ in ∗/,
void∗ output data p /∗ out ∗/,
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Op operator /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The argument list is identical to that for MPI Reduce except that there is no
dest process since all the processes should get the result.

3.4.5 Broadcast
If we can improve the performance of the global sum in our trapezoidal rule program
by replacing a loop of receives on process 0 with a tree-structured communication,
we ought to be able to do something similar with the distribution of the input data.
In fact, if we simply “reverse” the communications in the tree-structured global sum
in Figure 3.6, we obtain the tree-structured communication shown in Figure 3.10,
and we can use this structure to distribute the input data. A collective communication
in which data belonging to a single process is sent to all of the processes in the
communicator is called a broadcast, and you’ve probably guessed that MPI provides
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A global sum followed by distribution of the result
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A butterfly-structured global sum
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A tree-structured broadcast

a broadcast function:

int MPI Bcast(
void∗ data p /∗ in/out ∗/,
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
int source proc /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The process with rank source proc sends the contents of the memory referenced
by data p to all the processes in the communicator comm. Program 3.6 shows how

1 void Get input(
2 int my rank /∗ in ∗/,
3 int comm sz /∗ in ∗/,
4 double∗ a p /∗ out ∗/,
5 double∗ b p /∗ out ∗/,
6 int∗ n p /∗ out ∗/) {
7
8 if (my rank == 0) {
9 printf("Enter a, b, and n\n");

10 scanf("%lf %lf %d", a p, b p, n p);
11 }

12 MPI Bcast(a p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
13 MPI Bcast(b p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
14 MPI Bcast(n p, 1, MPI INT, 0, MPI COMM WORLD);
15 } /∗ Get input ∗/

Program 3.6: A version of Get input that uses MPI Bcast
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to modify the Get input function shown in Program 3.5 so that it uses MPI Bcast
instead of MPI Send and MPI Recv.

Recall that in serial programs, an in/out argument is one whose value is both
used and changed by the function. For MPI Bcast, however, the data p argument is
an input argument on the process with rank source proc and an output argument
on the other processes. Thus, when an argument to a collective communication is
labeled in/out, it’s possible that it’s an input argument on some processes and an
output argument on other processes.

3.4.6 Data distributions
Suppose we want to write a function that computes a vector sum:

x+ y= (x0,x1, . . . ,xn−1)+ (y0,y1, . . . ,yn−1)

= (x0+ y0,x1+ y1, . . . ,xn−1+ yn−1)

= (z0,z1, . . . ,zn−1)

= z

If we implement the vectors as arrays of, say, doubles, we could implement serial
vector addition with the code shown in Program 3.7.

1 void Vector sum(double x[], double y[], double z[], int n) {
2 int i;
3
4 for (i = 0; i < n; i++)
5 z[i] = x[i] + y[i];
6 } /∗ Vector sum ∗/

Program 3.7: A serial implementation of vector addition

How could we implement this using MPI? The work consists of adding the indi-
vidual components of the vectors, so we might specify that the tasks are just the
additions of corresponding components. Then there is no communication between
the tasks, and the problem of parallelizing vector addition boils down to aggregat-
ing the tasks and assigning them to the cores. If the number of components is n and
we have comm sz cores or processes, let’s assume that n evenly divides comm sz and
define local n= n/comm sz. Then we can simply assign blocks of local n consec-
utive components to each process. The four columns on the left of Table 3.4 show an
example when n= 12 and comm sz= 3. This is often called a block partition of the
vector.

An alternative to a block partition is a cyclic partition. In a cyclic partition,
we assign the components in a round robin fashion. The four columns in the mid-
dle of Table 3.4 show an example when n= 12 and comm sz= 3. Process 0 gets
component 0, process 1 gets component 1, process 2 gets component 2, process 0
gets component 3, and so on.
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Table 3.4 Different Partitions of a 12-Component Vector
among Three Processes

Components

Block-Cyclic

Process Block Cyclic Blocksize = 2

0 0 1 2 3 0 3 6 9 0 1 6 7
1 4 5 6 7 1 4 7 10 +6’ 3 8 9
2 8 9 10 11 2 5 8 11 4 5 10 11

A third alternative is a block-cyclic partition. The idea here is that instead
of using a cyclic distribution of individual components, we use a cyclic distri-
bution of blocks of components, so a block-cyclic distribution isn’t fully spec-
ified until we decide how large the blocks are. If comm sz= 3, n= 12, and
the blocksize b= 2, an example is shown in the four columns on the right of
Table 3.4.

Once we’ve decided how to partition the vectors, it’s easy to write a parallel vector
addition function: each process simply adds its assigned components. Furthermore,
regardless of the partition, each process will have local n components of the vec-
tor, and, in order to save on storage, we can just store these on each process as an
array of local n elements. Thus, each process will execute the function shown in
Program 3.8. Although the names of the variables have been changed to emphasize
the fact that the function is operating on only the process’ portion of the vector, this
function is virtually identical to the original serial function.

1 void Parallel vector sum(
2 double local x[] /∗ in ∗/,
3 double local y[] /∗ in ∗/,
4 double local z[] /∗ out ∗/,
5 int local n /∗ in ∗/) {
6 int local i;
7
8 for (local i = 0; local i < local n; local i++)
9 local z[local i] = local x[local i] + local y[local i];

10 } /∗ Parallel vector sum ∗/

Program 3.8: A parallel implementation of vector addition

3.4.7 Scatter
Now suppose we want to test our vector addition function. It would be convenient
to be able to read the dimension of the vectors and then read in the vectors x and y.
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We already know how to read in the dimension of the vectors: process 0 can prompt
the user, read in the value, and broadcast the value to the other processes. We might
try something similar with the vectors: process 0 could read them in and broadcast
them to the other processes. However, this could be very wasteful. If there are 10
processes and the vectors have 10,000 components, then each process will need
to allocate storage for vectors with 10,000 components, when it is only operating
on subvectors with 1000 components. If, for example, we use a block distribution,
it would be better if process 0 sent only components 1000 to 1999 to process 1,
components 2000 to 2999 to process 2, and so on. Using this approach, processes
1 to 9 would only need to allocate storage for the components they’re actually
using.

Thus, we might try writing a function that reads in an entire vector that is on
process 0 but only sends the needed components to each of the other processes. For
the communication MPI provides just such a function:

int MPI Scatter(
void∗ send buf p /∗ in ∗/,
int send count /∗ in ∗/,
MPI Datatype send type /∗ in ∗/,
void∗ recv buf p /∗ out ∗/,
int recv count /∗ in ∗/,
MPI Datatype recv type /∗ in ∗/,
int src proc /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

If the communicator comm contains comm sz processes, then MPI Scatter divides the
data referenced by send buf p into comm sz pieces—the first piece goes to process 0,
the second to process 1, the third to process 2, and so on. For example, suppose we’re
using a block distribution and process 0 has read in all of an n-component vector into
send buf p. Then, process 0 will get the first local n= n/comm sz components,
process 1 will get the next local n components, and so on. Each process should pass
its local vector as the recv buf p argument and the recv count argument should
be local n. Both send type and recv type should be MPI DOUBLE and src proc
should be 0. Perhaps surprisingly, send count should also be local n—send count
is the amount of data going to each process; it’s not the amount of data in the memory
referred to by send buf p. If we use a block distribution and MPI Scatter, we can
read in a vector using the function Read vector shown in Program 3.9.

One point to note here is that MPI Scatter sends the first block of send count
objects to process 0, the next block of send count objects to process 1, and so on,
so this approach to reading and distributing the input vectors will only be suitable
if we’re using a block distribution and n, the number of components in the vectors,
is evenly divisible by comm sz. We’ll discuss a partial solution to dealing with a
cyclic or block-cyclic distribution in Exercise 18. For a complete solution, see [23].
We’ll look at dealing with the case in which n is not evenly divisible by comm sz in
Exercise 3.13.
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1 void Read vector(
2 double local a[] /∗ out ∗/,
3 int local n /∗ in ∗/,
4 int n /∗ in ∗/,
5 char vec name[] /∗ in ∗/,
6 int my rank /∗ in ∗/,
7 MPI Comm comm /∗ in ∗/) {
8
9 double∗ a = NULL;

10 int i;
11
12 if (my rank == 0) {
13 a = malloc(n∗sizeof(double));
14 printf("Enter the vector %s\n", vec name);
15 for (i = 0; i < n; i++)
16 scanf("%lf", &a[i]);
17 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
18 MPI DOUBLE, 0, comm);
19 free(a);
20 } else {
21 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
22 MPI DOUBLE, 0, comm);
23 }

24 } /∗ Read vector ∗/

Program 3.9: A function for reading and distributing a vector

3.4.8 Gather
Of course, our test program will be useless unless we can see the result of our vector
addition, so we need to write a function for printing out a distributed vector. Our
function can collect all of the components of the vector onto process 0, and then
process 0 can print all of the components. The communication in this function can be
carried out by MPI Gather,

int MPI Gather(
void∗ send buf p /∗ in ∗/,
int send count /∗ in ∗/,
MPI Datatype send type /∗ in ∗/,
void∗ recv buf p /∗ out ∗/,
int recv count /∗ in ∗/,
MPI Datatype recv type /∗ in ∗/,
int dest proc /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The data stored in the memory referred to by send buf p on process 0 is stored in the
first block in recv buf p, the data stored in the memory referred to by send buf p
on process 1 is stored in the second block referred to by recv buf p, and so on. So,
if we’re using a block distribution, we can implement our distributed vector print
function as shown in Program 3.10. Note that recv count is the number of data
items received from each process, not the total number of data items received.
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1 void Print vector(
2 double local b[] /∗ in ∗/,
3 int local n /∗ in ∗/,
4 int n /∗ in ∗/,
5 char title[] /∗ in ∗/,
6 int my rank /∗ in ∗/,
7 MPI Comm comm /∗ in ∗/) {
8
9 double∗ b = NULL;

10 int i;
11
12 if (my rank == 0) {
13 b = malloc(n∗sizeof(double));
14 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
15 MPI DOUBLE, 0, comm);
16 printf("%s\n", title);
17 for (i = 0; i < n; i++)
18 printf("%f ", b[i]);
19 printf("\n");
20 free(b);
21 } else {
22 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
23 MPI DOUBLE, 0, comm);
24 }

25 } /∗ Print vector ∗/

Program 3.10: A function for printing a distributed vector

The restrictions on the use of MPI Gather are similar to those on the use of
MPI Scatter: our print function will only work correctly with vectors using a block
distribution in which each block has the same size.

3.4.9 Allgather
As a final example, let’s look at how we might write an MPI function that multiplies
a matrix by a vector. Recall that if A= (aij) is an m× n matrix and x is a vector with
n components, then y= Ax is a vector with m components and we can find the ith
component of y by forming the dot product of the ith row of A with x:

yi = ai0x0+ ai1x1+ ai2x2+ ·· ·ai,n−1xn−1.

See Figure 3.11.
Thus, we might write pseudo-code for serial matrix multiplication as follows:

/∗ For each row of A ∗/
for (i = 0; i < m; i++) {

/∗ Form dot product of ith row with x ∗/
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]∗x[j];
}
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FIGURE 3.11

Matrix-vector multiplication

In fact, this could be actual C code. However, there are some peculiarities in the
way that C programs deal with two-dimensional arrays (see Exercise 3.14), so C
programmers frequently use one-dimensional arrays to “simulate” two-dimensional
arrays. The most common way to do this is to list the rows one after another. For
example, the two-dimensional array0 1 2 3

4 5 6 7
8 9 10 11


would be stored as the one-dimensional array

0 1 2 3 4 5 6 7 8 9 10 11.

In this example, if we start counting rows and columns from 0, then the element stored
in row 2 and column 1 in the two-dimensional array (the 9), is located in position
2× 4+ 1= 9 in the one-dimensional array. More generally, if our array has n
columns, when we use this scheme, we see that the element stored in row i and
column j is located in position i× n+ j in the one-dimensional array. Using this
one-dimensional scheme, we get the C function shown in Program 3.11.

Now let’s see how we might parallelize this function. An individual task can be
the multiplication of an element of A by a component of x and the addition of this
product into a component of y. That is, each execution of the statement

y[i] += A[i∗n+j]∗x[j];

is a task. So we see that if y[i] is assigned to process q, then it would be convenient
to also assign row i of A to process q. This suggests that we partition A by rows. We
could partition the rows using a block distribution, a cyclic distribution, or a block-
cyclic distribution. In MPI it’s easiest to use a block distribution, so let’s use a block
distribution of the rows of A, and, as usual, assume that comm sz evenly divides m,
the number of rows.

We are distributing A by rows so that the computation of y[i] will have all of the
needed elements of A, so we should distribute y by blocks. That is, if the ith row of
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1 void Mat vect mult(
2 double A[] /∗ in ∗/,
3 double x[] /∗ in ∗/,
4 double y[] /∗ out ∗/,
5 int m /∗ in ∗/,
6 int n /∗ in ∗/) {
7 int i, j;
8
9 for (i = 0; i < m; i++) {

10 y[i] = 0.0;
11 for (j = 0; j < n; j++)
12 y[i] += A[i∗n+j]∗x[j];
13 }

14 } /∗ Mat vect mult ∗/

Program 3.11: Serial matrix-vector multiplication

A, is assigned to process q, then the ith component of y should also be assigned to
process q.

Now the computation of y[i] involves all the elements in the ith row of A and
all the components of x, so we could minimize the amount of communication by
simply assigning all of x to each process. However, in actual applications—especially
when the matrix is square—it’s often the case that a program using matrix-vector
multiplication will execute the multiplication many times and the result vector y from
one multiplication will be the input vector x for the next iteration. In practice, then,
we usually assume that the distribution for x is the same as the distribution for y.

So if x has a block distribution, how can we arrange that each process has access
to all the components of x before we execute the following loop?

for (j = 0; j < n; j++)
y[i] += A[i∗n+j]∗x[j];

Using the collective communications we’re already familiar with, we could execute
a call to MPI Gather followed by a call to MPI Bcast. This would, in all likelihood,
involve two tree-structured communications, and we may be able to do better by
using a butterfly. So, once again, MPI provides a single function:

int MPI Allgather(
void∗ send buf p /∗ in ∗/,
int send count /∗ in ∗/,
MPI Datatype send type /∗ in ∗/,
void∗ recv buf p /∗ out ∗/,
int recv count /∗ in ∗/,
MPI Datatype recv type /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

This function concatenates the contents of each process’ send buf p and stores this
in each process’ recv buf p. As usual, recv count is the amount of data being
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1 void Mat vect mult(
2 double local A[] /∗ in ∗/,
3 double local x[] /∗ in ∗/,
4 double local y[] /∗ out ∗/,
5 int local m /∗ in ∗/,
6 int n /∗ in ∗/,
7 int local n /∗ in ∗/,
8 MPI Comm comm /∗ in ∗/) {
9 double∗ x;

10 int local i, j;
11 int local ok = 1;
12
13 x = malloc(n∗sizeof(double));
14 MPI Allgather(local x, local n, MPI DOUBLE,
15 x, local n, MPI DOUBLE, comm);
16
17 for (local i = 0; local i < local m; local i++) {
18 local y[local i] = 0.0;
19 for (j = 0; j < n; j++)
20 local y[local i] += local A[local i∗n+j]∗x[j];
21 }

22 free(x);
23 } /∗ Mat vect mult ∗/

Program 3.12: An MPI matrix-vector multiplication function

received from each process, so in most cases, recv count will be the same as
send count.

We can now implement our parallel matrix-vector multiplication function as
shown in Program 3.12. If this function is called many times, we can improve per-
formance by allocating x once in the calling function and passing it as an additional
argument.

3.5 MPI DERIVED DATATYPES
In virtually all distributed-memory systems, communication can be much more
expensive than local computation. For example, sending a double from one node
to another will take far longer than adding two doubles stored in the local memory
of a node. Furthermore, the cost of sending a fixed amount of data in multiple mes-
sages is usually much greater than the cost of sending a single message with the same
amount of data. For example, we would expect the following pair of for loops to be
much slower than the single send/receive pair:

double x[1000];
. . .
if (my rank == 0)

for (i = 0; i < 1000; i++)
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MPI Send(&x[i], 1, MPI DOUBLE, 1, 0, comm);
else /∗ my rank == 1 ∗/

for (i = 0; i < 1000; i++)
MPI Recv(&x[i], 1, MPI DOUBLE, 0, 0, comm, &status);

if (my rank == 0)
MPI Send(x, 1000, MPI DOUBLE, 1, 0, comm);

else /∗ my rank == 1 ∗/
MPI Recv(x, 1000, MPI DOUBLE, 0, 0, comm, &status);

In fact, on one of our systems, the code with the loops of sends and receives takes
nearly 50 times longer. On another system, the code with the loops takes more than
100 times longer. Thus, if we can reduce the total number of messages we send, we’re
likely to improve the performance of our programs.

MPI provides three basic approaches to consolidating data that might other-
wise require multiple messages: the count argument to the various communication
functions, derived datatypes, and MPI Pack/Unpack. We’ve already seen the count
argument—it can be used to group contiguous array elements into a single message.
In this section we’ll discuss one method for building derived datatypes. In the exer-
cises, we’ll take a look at some other methods for building derived datatypes and
MPI Pack/Unpack

In MPI, a derived datatype can be used to represent any collection of data items
in memory by storing both the types of the items and their relative locations in
memory. The idea here is that if a function that sends data knows the types and the
relative locations in memory of a collection of data items, it can collect the items from
memory before they are sent. Similarly, a function that receives data can distribute
the items into their correct destinations in memory when they’re received. As an
example, in our trapezoidal rule program we needed to call MPI Bcast three times:
once for the left endpoint a, once for the right endpoint b, and once for the number of
trapezoids n. As an alternative, we could build a single derived datatype that consists
of two doubles and one int. If we do this, we’ll only need one call to MPI Bcast. On
process 0, a,b, and n will be sent with the one call, while on the other processes, the
values will be received with the call.

Formally, a derived datatype consists of a sequence of basic MPI datatypes
together with a displacement for each of the datatypes. In our trapezoidal rule exam-
ple, suppose that on process 0 the variables a, b, and n are stored in memory locations
with the following addresses:

Variable Address

a 24
b 40
n 48

Then the following derived datatype could represent these data items:

{(MPI DOUBLE,0),(MPI DOUBLE,16),(MPI INT,24)}.



118 CHAPTER 3 Distributed-Memory Programming with MPI

The first element of each pair corresponds to the type of the data, and the second
element of each pair is the displacement of the data element from the beginning of
the type. We’ve assumed that the type begins with a, so it has displacement 0, and
the other elements have displacements measured, in bytes, from a: b is 40− 24= 16
bytes beyond the start of a, and n is 48− 24= 24 bytes beyond the start of a.

We can use MPI Type create struct to build a derived datatype that consists of
individual elements that have different basic types:

int MPI Type create struct(
int count /∗ in ∗/,
int array of blocklengths[] /∗ in ∗/,
MPI Aint array of displacements[] /∗ in ∗/,
MPI Datatype array of types[] /∗ in ∗/,
MPI Datatype∗ new type p /∗ out ∗/);

The argument count is the number of elements in the datatype, so for our example, it
should be three. Each of the array arguments should have count elements. The first
array, array of block lengths, allows for the possibility that the individual data
items might be arrays or subarrays. If, for example, the first element were an array
containing five elements, we would have

array of blocklengths[0] = 5;

However, in our case, none of the elements is an array, so we can simply define

int array of blocklengths[3] = {1, 1, 1};

The third argument to MPI Type create struct, array of displacements,
specifies the displacements, in bytes, from the start of the message. So we want

array of displacements[] = {0, 16, 24};

To find these values, we can use the function MPI Get address:

int MPI Get address(
void∗ location p /∗ in ∗/,
MPI Aint∗ address p /∗ out ∗/);

It returns the address of the memory location referenced by location p. The special
type MPI Aint is an integer type that is big enough to store an address on the sys-
tem. Thus, in order to get the values in array of displacements, we can use the
following code:

MPI Aint a addr, b addr, n addr;

MPI Get address(&a, &a addr);
array of displacements[0] = 0;
MPI Get address(&b, &b addr);
array of displacements[1] = b addr − a addr;
MPI Get address(&n, &n addr);
array of displacements[2] = n addr − a addr;
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The array of datatypes should store the MPI datatypes of the elements, so we
can just define

MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};

With these initializations, we can build the new datatype with the call

MPI Datatype input mpi t;
. . .
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
&input mpi t);

Before we can use input mpi t in a communication function, we must first
commit it with a call to

int MPI Type commit(MPI Datatype∗ new mpi t p /∗ in/out ∗/);

This allows the MPI implementation to optimize its internal representation of the
datatype for use in communication functions.

Now, in order to use new mpi t, we make the following call to MPI Bcast on each
process:

MPI Bcast(&a, 1, input mpi t, 0, comm);

So we can use input mpi t just as we would use one of the basic MPI datatypes.
In constructing the new datatype, it’s likely that the MPI implementation had to

allocate additional storage internally. Therefore, when we’re through using the new
type, we can free any additional storage used with a call to

int MPI Type free(MPI Datatype∗ old mpi t p /∗ in/out ∗/);

We used the steps outlined here to define a Build mpi type function that our
Get input function can call. The new function and the updated Get input function
are shown in Program 3.13.

3.6 PERFORMANCE EVALUATION OF MPI PROGRAMS
Let’s take a look at the performance of the matrix-vector multiplication program. For
the most part we write parallel programs because we expect that they’ll be faster
than a serial program that solves the same problem. How can we verify this? We
spent some time discussing this in Section 2.6, so we’ll start by recalling some of the
material we learned there.

3.6.1 Taking timings
We’re usually not interested in the time taken from the start of program execution
to the end of program execution. For example, in the matrix-vector multiplication,
we’re not interested in the time it takes to type in the matrix or print out the product.
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void Build mpi type(
double∗ a p /∗ in ∗/,
double∗ b p /∗ in ∗/,
int∗ n p /∗ in ∗/,
MPI Datatype∗ input mpi t p /∗ out ∗/) {

int array of blocklengths[3] = {1, 1, 1};
MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};
MPI Aint a addr, b addr, n addr;
MPI Aint array of displacements[3] = {0};

MPI Get address(a p, &a addr);
MPI Get address(b p, &b addr);
MPI Get address(n p, &n addr);
array of displacements[1] = b addr−a addr;
array of displacements[2] = n addr−a addr;
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
input mpi t p);

MPI Type commit(input mpi t p);
} /∗ Build mpi type ∗/

void Get input(int my rank, int comm sz, double∗ a p, double∗ b p,
int∗ n p) {

MPI Datatype input mpi t;

Build mpi type(a p, b p, n p, &input mpi t);

if (my rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a p, b p, n p);

}

MPI Bcast(a p, 1, input mpi t, 0, MPI COMM WORLD);

MPI Type free(&input mpi t);
} /∗ Get input ∗/

Program 3.13: The Get input function with a derived datatype

We’re only interested in the time it takes to do the actual multiplication, so we need
to modify our source code by adding in calls to a function that will tell us the amount
of time that elapses from the beginning to the end of the actual matrix-vector mul-
tiplication. MPI provides a function, MPI Wtime, that returns the number of seconds
that have elapsed since some time in the past:

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

double start, finish;
. . .
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start = MPI Wtime();
/∗ Code to be timed ∗/
. . .
finish = MPI Wtime();
printf("Proc %d > Elapsed time = %e seconds\n"

my rank, finish−start);

In order to time serial code, it’s not necessary to link in the MPI libraries. There is
a POSIX library function called gettimeofday that returns the number of microsec-
onds that have elapsed since some point in the past. The syntax details aren’t too
important. There’s a C macro GET TIME defined in the header file timer.h that can
be downloaded from the book’s website. This macro should be called with a double
argument:

#include "timer.h"
. . .
double now;
. . .
GET TIME(now);

After executing this macro, now will store the number of seconds since some time in
the past. We can get the elapsed time of serial code with microsecond resolution by
executing

#include "timer.h"
. . .
double start, finish;
. . .
GET TIME(start);
/∗ Code to be timed ∗/
. . .
GET TIME(finish);
printf("Elapsed time = %e seconds\n", finish−start);

One point to stress here: GET TIME is a macro, so the code that defines it is inserted
directly into your source code by the preprocessor. Hence, it can operate directly
on its argument, and the argument is a double, not a pointer to a double. A final
note in this connection: Since timer.h is not in the system include file directory,
it’s necessary to tell the compiler where to find it if it’s not in the directory where
you’re compiling. For example, if it’s in the directory /home/peter/my include,
the following command can be used to compile a serial program that uses GET TIME:

$ gcc −g −Wall −I/home/peter/my include −o <executable>
<source code.c>

Both MPI Wtime and GET TIME return wall clock time. Recall that a timer like the
C clock function returns CPU time—the time spent in user code, library functions,
and operating system code. It doesn’t include idle time, which can be a significant
part of parallel run time. For example, a call to MPI Recv may spend a significant
amount of time waiting for the arrival of a message. Wall clock time, on the other
hand, gives total elapsed time, so it includes idle time.
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There are still a few remaining issues. First, as we’ve described it, our parallel
program will report comm sz times, one for each process. We would like to have it
report a single time. Ideally, all of the processes would start execution of the matrix-
vector multiplication at the same time, and then, we would report the time that elapsed
when the last process finished. In other words, the parallel execution time would be
the time it took the “slowest” process to finish. We can’t get exactly this time because
we can’t insure that all the processes start at the same instant. However, we can come
reasonably close. The MPI collective communication function MPI Barrier insures
that no process will return from calling it until every process in the communicator
has started calling it. It’s syntax is

int MPI Barrier(MPI Comm comm /∗ in ∗/);

The following code can be used to time a block of MPI code and report a single
elapsed time:

double local start, local finish, local elapsed, elapsed;
. . .
MPI Barrier(comm);
local start = MPI Wtime();
/∗ Code to be timed ∗/
. . .
local finish = MPI Wtime();
local elapsed = local finish − local start;
MPI Reduce(&local elapsed, &elapsed, 1, MPI DOUBLE,

MPI MAX, 0, comm);

if (my rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);

Note that the call to MPI Reduce is using the MPI MAX operator; it finds the largest of
the input arguments local elapsed.

As we noted in Chapter 2, we also need to be aware of variability in timings:
when we run a program several times, we’re likely to see a substantial variation in the
times. This will be true even if for each run we use the same input, the same number
of processes, and the same system. This is because the interaction of the program
with the rest of the system, especially the operating system, is unpredictable. Since
this interaction will almost certainly not make the program run faster than it would
run on a “quiet” system, we usually report the minimum run-time rather than the mean
or median. (For further discussion of this, see [5].)

Finally, when we run an MPI program on a hybrid system in which the nodes are
multicore processors, we’ll only run one MPI process on each node. This may reduce
contention for the interconnect and result in somewhat better run-times. It may also
reduce variability in run-times.

3.6.2 Results
The results of timing the matrix-vector multiplication program are shown in
Table 3.5. The input matrices were square. The times shown are in milliseconds,
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Table 3.5 Run-Times of Serial and Parallel
Matrix-Vector Multiplication (times are in
milliseconds)

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 4.1 16.0 64.0 270 1100
2 2.3 8.5 33.0 140 560
4 2.0 5.1 18.0 70 280
8 1.7 3.3 9.8 36 140

16 1.7 2.6 5.9 19 71

and we’ve rounded each time to two significant digits. The times for comm sz= 1
are the run-times of the serial program running on a single core of the distributed-
memory system. Not surprisingly, if we fix comm sz, and increase n, the order of the
matrix, the run-times increase. For relatively small numbers of processes, doubling n
results in roughly a four-fold increase in the run-time. However, for large numbers of
processes, this formula breaks down.

If we fix n and increase comm sz, the run-times usually decrease. In fact, for large
values of n, doubling the number of processes roughly halves the overall run-time.
However, for small n, there is very little benefit in increasing comm sz. In fact, in
going from 8 to 16 processes when n= 1024, the overall run time is unchanged.

These timings are fairly typical of parallel run-times—as we increase the problem
size, the run-times increase, and this is true regardless of the number of processes.
The rate of increase can be fairly constant (e.g., the one-process times) or it can
vary wildly (e.g., the 16-process times). As we increase the number of processes, the
run-times typically decrease for a while. However, at some point, the run-times can
actually start to get worse. The closest we came to this behavior was going from 8 to
16 processes when the matrix had order 1024.

The explanation for this is that there is a fairly common relation between the
run-times of serial programs and the run-times of corresponding parallel programs.
Recall that we denote the serial run-time by Tserial. Since it typically depends on the
size of the input, n, we’ll frequently denote it as Tserial(n). Also recall that we denote
the parallel run-time by Tparallel. Since it depends on both the input size, n, and the
number of processes, comm sz= p, we’ll frequently denote it as Tparallel(n,p). As we
noted in Chapter 2, it’s often the case that the parallel program will divide the work
of the serial program among the processes, and add in some overhead time, which we
denoted Toverhead:

Tparallel(n,p)= Tserial(n)/p+Toverhead.

In MPI programs, the parallel overhead typically comes from communication, and it
can depend on both the problem size and the number of processes.
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It’s not too hard to see that this formula applies to our matrix-vector multiplication
program. The heart of the serial program is the pair of nested for loops:

for (i = 0; i < m; i++) {
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i∗n+j]∗x[j];
}

If we only count floating point operations, the inner loop carries out n multiplications
and n additions, for a total of 2n floating point operations. Since we execute the inner
loop m times, the pair of loops executes a total of 2mn floating point operations. So
when m= n,

Tserial(n)≈ an2

for some constant a. (The symbol ≈ means “is approximately equal to.”)
If the serial program multiplies an n× n matrix by an n-dimensional vector,

then each process in the parallel program multiplies an n/p× n matrix by an
n-dimensional vector. The local matrix-vector multiplication part of the parallel pro-
gram therefore executes n2/p floating point operations. Thus, it appears that this local
matrix-vector multiplication reduces the work per process by a factor of p.

However, the parallel program also needs to complete a call to MPI Allgather
before it can carry out the local matrix-vector multiplication. In our example, it
appears that

Tparallel(n,p)= Tserial(n)/p+Tallgather.

Furthermore, in light of our timing data, it appears that for smaller values of p and
larger values of n, the dominant term in our formula is Tserial(n)/p. To see this,
observe first that for small p (e.g., p= 2,4), doubling p roughly halves the overall
run-time. For example,

Tserial(4096)= 1.9×Tparallel(4096,2)

Tserial(8192)= 1.9×Tparallel(8192,2)

Tparallel(8192,2)= 2.0×Tparallel(8192,4)

Tserial(16,384)= 2.0×Tparallel(16,384,2)

Tparallel(16,384,2)= 2.0×Tparallel(16,384,4)

Also, if we fix p at a small value (e.g., p= 2,4), then increasing n seems to have
approximately the same effect as increasing n for the serial program. For example,

Tserial(4096)= 4.0×Tserial(2048)

Tparallel(4096,2)= 3.9×Tparallel(2048,2)

Tparallel(4096,4)= 3.5×Tparallel(2048,4)
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Tserial(8192)= 4.2×Tserial(4096)

Tparallel(8192,2)= 4.2×Tparallel(4096,2)

Tparallel(8192,4)= 3.9×Tparallel(8192,4)

These observations suggest that the parallel run-times are behaving much as the run-
times of the serial program—that is, Tparallel(n,p) is approximately Tserial(n)/p—so
the overhead Tallgather has little effect on the performance.

On the other hand, for small n and large p these patterns break down. For example,

Tparallel(1024,8)= 1.0×Tparallel(1024,16)

Tparallel(2048,16)= 1.5×Tparallel(1024,16)

Thus, it appears that for small n and large p, the dominant term in our formula for
Tparallel is Tallgather.

3.6.3 Speedup and efficiency
Recall that the most widely used measure of the relation between the serial and the
parallel run-times is the speedup. It’s just the ratio of the serial run-time to the parallel
run-time:

S(n,p)=
Tserial(n)

Tparallel(n,p)
.

The ideal value for S(n,p) is p. If S(n,p)= p, then our parallel program with
comm sz= p processes is running p times faster than the serial program. In practice,
this speedup, sometimes called linear speedup, is rarely achieved. Our matrix-vector
multiplication program got the speedups shown in Table 3.6. For small p and large n,
our program obtained nearly linear speedup. On the other hand, for large p and
small n, the speedup was considerably less than p. The worst case was n= 1024
and p= 16, when we only managed a speedup of 2.4.

Table 3.6 Speedups of Parallel Matrix-Vector
Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.0 1.0 1.0 1.0 1.0
2 1.8 1.9 1.9 1.9 2.0
4 2.1 3.1 3.6 3.9 3.9
8 2.4 4.8 6.5 7.5 7.9
16 2.4 6.2 10.8 14.2 15.5
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Table 3.7 Efficiencies of Parallel
Matrix-Vector Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.00 1.00 1.00 1.00 1.00
2 0.89 0.94 0.97 0.96 0.98
4 0.51 0.78 0.89 0.96 0.98
8 0.30 0.61 0.82 0.94 0.98
16 0.15 0.39 0.68 0.89 0.97

Also recall that another widely used measure of parallel performance is parallel
efficiency. This is “per process” speedup:

E(n,p)=
S(n,p)

p
=

Tserial(n)

p×Tparallel(n,p)
.

Linear speedup corresponds to a parallel efficiency of p/p= 1.0, and, in general, we
expect that our efficiencies will be less than 1.

The efficiencies for the matrix-vector multiplication program are shown in
Table 3.7. Once again, for small p and large n our parallel efficiencies are near linear,
and for large p and small n, they are very far from linear.

3.6.4 Scalability
Our parallel matrix-vector multiplication program doesn’t come close to obtaining
linear speedup for small n and large p. Does this mean that it’s not a good program?
Many computer scientists answer this question by looking at the “scalability” of the
program. Recall that very roughly speaking, a program is scalable if the problem
size can be increased at a rate so that the efficiency doesn’t decrease as the number
of processes increase.

The problem with this definition is the phrase “the problem size can be increased
at a rate . . . ” Consider two parallel programs: program A and program B. Suppose that
if p≥ 2, the efficiency of program A is 0.75, regardless of problem size. Also suppose
that the efficiency of program B is n/(625p), provided p≥ 2 and 1000≤ n≤ 625p.
Then according to our “definition,” both programs are scalable. For program A, the
rate of increase needed to maintain constant efficiency is 0, while for program B if
we increase n at the same rate as we increase p, we’ll maintain a constant efficiency.
For example, if n= 1000 and p= 2, the efficiency of B is 0.80. If we then double p
to 4 and we leave the problem size at n= 1000, the efficiency will drop to 0.40, but
if we also double the problem size to n= 2000, the efficiency will remain constant
at 0.80. Program A is thus more scalable than B, but both satisfy our definition of
scalability.
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Looking at our table of parallel efficiencies (Table 3.7), we see that our matrix-
vector multiplication program definitely doesn’t have the same scalability as program
A: in almost every case when p is increased, the efficiency decreases. On the other
hand, the program is somewhat like program B: if p≥ 2 and we increase both p
and n by a factor of 2, the parallel efficiency, for the most part, actually increases.
Furthermore, the only exceptions occur when we increase p from 2 to 4, and when
computer scientists discuss scalability, they’re usually interested in large values of
p. When p is increased from 4 to 8 or from 8 to 16, our efficiency always increases
when we increase n by a factor of 2.

Recall that programs that can maintain a constant efficiency without increas-
ing the problem size are sometimes said to be strongly scalable. Programs that
can maintain a constant efficiency if the problem size increases at the same rate as
the number of processes are sometimes said to be weakly scalable. Program A is
strongly scalable, and program B is weakly scalable. Furthermore, our matrix-vector
multiplication program is also apparently weakly scalable.

3.7 A PARALLEL SORTING ALGORITHM
What do we mean by a parallel sorting algorithm in a distributed-memory envi-
ronment? What would its “input” be and what would its “output” be? The answers
depend on where the keys are stored. We can start or finish with the keys distributed
among the processes or assigned to a single process. In this section we’ll look at an
algorithm that starts and finishes with the keys distributed among the processes. In
Programming Assignment 3.8 we’ll look at an algorithm that finishes with the keys
assigned to a single process.

If we have a total of n keys and p= comm sz processes, our algorithm will start
and finish with n/p keys assigned to each process. (As usual, we’ll assume n is evenly
divisible by p.) At the start, there are no restrictions on which keys are assigned to
which processes. However, when the algorithm terminates,

. the keys assigned to each process should be sorted in (say) increasing order, and. if 0≤ q< r < p, then each key assigned to process q should be less than or equal
to every key assigned to process r.

So if we lined up the keys according to process rank—keys from process 0 first, then
keys from process 1, and so on—then the keys would be sorted in increasing order.
For the sake of explicitness, we’ll assume our keys are ordinary ints.

3.7.1 Some simple serial sorting algorithms
Before starting, let’s look at a couple of simple serial sorting algorithms. Perhaps the
best known serial sorting algorithm is bubble sort (see Program 3.14). The array a
stores the unsorted keys when the function is called, and the sorted keys when the
function returns. The number of keys in a is n. The algorithm proceeds by comparing
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1 void Bubble sort(
2 int a[] /∗ in/out ∗/,
3 int n /∗ in ∗/) {
4 int list length, i, temp;
5
6 for (list length = n; list length >= 2; list length−−)
7 for (i = 0; i < list length−1; i++)
8 if (a[i] > a[i+1]) {
9 temp = a[i];

10 a[i] = a[i+1];
11 a[i+1] = temp;
12 }

13
14 } /∗ Bubble sort ∗/

Program 3.14: Serial bubble sort

the elements of the list a pairwise: a[0] is compared to a[1], a[1] is compared to
a[2], and so on. Whenever a pair is out of order, the entries are swapped, so in the
first pass through the outer loop, when list length = n, the largest value in the list
will be moved into a[n−1]. The next pass will ignore this last element and it will
move the next-to-the-largest element into a[n−2]. Thus, as list length decreases,
successively more elements get assigned to their final positions in the sorted list.

There isn’t much point in trying to parallelize this algorithm because of the inher-
ently sequential ordering of the comparisons. To see this, suppose that a[i−1] = 9,
a[i] = 5, and a[i+1] = 7. The algorithm will first compare 9 and 5 and swap them, it
will then compare 9 and 7 and swap them, and we’ll have the sequence 5,7,9. If we
try to do the comparisons out of order, that is, if we compare the 5 and 7 first and then
compare the 9 and 5, we’ll wind up with the sequence 5,9,7. Therefore, the order in
which the “compare-swaps” take place is essential to the correctness of the algorithm.

A variant of bubble sort known as odd-even transposition sort has considerably
more opportunities for parallelism. The key idea is to “decouple” the compare-swaps.
The algorithm consists of a sequence of phases, of two different types. During even
phases, compare-swaps are executed on the pairs

(a[0],a[1]),(a[2],a[3]),(a[4],a[5]), . . . ,

and during odd phases, compare-swaps are executed on the pairs

(a[1],a[2]),(a[3],a[4]),(a[5],a[6]), . . . .

Here’s a small example:

Start: 5,9,4,3
Even phase: Compare-swap (5,9) and (4,3), getting the list 5,9,3,4.
Odd phase: Compare-swap (9,3), getting the list 5,3,9,4.
Even phase: Compare-swap (5,3) and (9,4), getting the list 3,5,4,9.
Odd phase: Compare-swap (5,4), getting the list 3,4,5,9.
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This example required four phases to sort a four-element list. In general, it may
require fewer phases, but the following theorem guarantees that we can sort a list
of n elements in at most n phases:

Theorem. Suppose A is a list with n keys, and A is the input to the odd-even transposition
sort algorithm. Then, after n phases A will be sorted.

Program 3.15 shows code for a serial odd-even transposition sort function.

1 void Odd even sort(
2 int a[] /∗ in/out ∗/,
3 int n /∗ in ∗/) {
4 int phase, i, temp;
5
6 for (phase = 0; phase < n; phase++)
7 if (phase % 2 == 0) { /∗ Even phase ∗/
8 for (i = 1; i < n; i += 2)
9 if (a[i−1] > a[i]) {

10 temp = a[i];
11 a[i] = a[i−1];
12 a[i−1] = temp;
13 }

14 } else { /∗ Odd phase ∗/
15 for (i = 1; i < n−1; i += 2)
16 if (a[i] > a[i+1]) {
17 temp = a[i];
18 a[i] = a[i+1];
19 a[i+1] = temp;
20 }

21 }

22 } /∗ Odd even sort ∗/

Program 3.15: Serial odd-even transposition sort

3.7.2 Parallel odd-even transposition sort
It should be clear that odd-even transposition sort has considerably more opportu-
nities for parallelism than bubble sort, because all of the compare-swaps in a single
phase can happen simultaneously. Let’s try to exploit this.

There are a number of possible ways to apply Foster’s methodology. Here’s one:

. Tasks: Determine the value of a[i] at the end of phase j.. Communications: The task that’s determining the value of a[i] needs to commu-
nicate with either the task determining the value of a[i−1] or a[i+1]. Also the
value of a[i] at the end of phase j needs to be available for determining the value
of a[i] at the end of phase j+ 1.

This is illustrated in Figure 3.12, where we’ve labeled the tasks determining the value
of a[i] with a[i].
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a[i - 1]

a[i - 1] phase j + 1

phase ja[i]

a[i] a[i + 1]

a[i + 1]

FIGURE 3.12

Communications among tasks in an odd-even sort. Tasks determining a[i] are labeled
with a[i].

Now recall that when our sorting algorithm starts and finishes execution, each
process is assigned n/p keys. In this case our aggregation and mapping are at least
partially specified by the description of the problem. Let’s look at two cases.

When n= p, Figure 3.12 makes it fairly clear how the algorithm should proceed.
Depending on the phase, process i can send its current value, a[i], either to process
i− 1 or process i+ 1. At the same time, it should receive the value stored on process
i− 1 or process i+ 1, respectively, and then decide which of the two values it should
store as a[i] for the next phase.

However, it’s unlikely that we’ll actually want to apply the algorithm when n= p,
since we’re unlikely to have more than a few hundred or a few thousand processors
at our disposal, and sorting a few thousand values is usually a fairly trivial mat-
ter for a single processor. Furthermore, even if we do have access to thousands or
even millions of processors, the added cost of sending and receiving a message for
each compare-exchange will slow the program down so much that it will be useless.
Remember that the cost of communication is usually much greater than the cost of
“local” computation—for example, a compare-swap.

How should this be modified when each process is storing n/p> 1 elements?
(Recall that we’re assuming that n is evenly divisible by p.) Let’s look at an example.
Suppose we have p= 4 processes and n= 16 keys assigned, as shown in Table 3.8.
In the first place, we can apply a fast serial sorting algorithm to the keys assigned
to each process. For example, we can use the C library function qsort on each pro-
cess to sort the local keys. Now if we had one element per process, 0 and 1 would
exchange elements, and 2 and 3 would exchange. So let’s try this: Let’s have 0 and 1
exchange all their elements and 2 and 3 exchange all of theirs. Then it would seem
natural for 0 to keep the four smaller elements and 1 to keep the larger. Similarly,
2 should keep the smaller and 3 the larger. This gives us the situation shown in the
third row of the the table. Once again, looking at the one element per process case,
in phase 1, processes 1 and 2 exchange their elements and processes 0 and 3 are
idle. If process 1 keeps the smaller and 2 the larger elements, we get the distribution
shown in the fourth row. Continuing this process for two more phases results in a
sorted list. That is, each process’ keys are stored in increasing order, and if q< r,
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Table 3.8 Parallel Odd-Even Transposition Sort

Process

Time 0 1 2 3

Start 15, 11, 9, 16 3, 14, 8, 7 4, 6, 12, 10 5, 2, 13, 1
After Local Sort 9, 11, 15, 16 3, 7, 8, 14 4, 6, 10, 12 1, 2, 5, 13
After Phase 0 3, 7, 8, 9 11, 14, 15, 16 1, 2, 4, 5 6, 10, 12, 13
After Phase 1 3, 7, 8, 9 1, 2, 4, 5 11, 14, 15, 16 6, 10, 12, 13
After Phase 2 1, 2, 3, 4 5, 7, 8, 9 6, 10, 11, 12 13, 14, 15, 16
After Phase 3 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16

then the keys assigned to process q are less than or equal to the keys assigned to
process r.

In fact, our example illustrates the worst-case performance of this algorithm:

Theorem. If parallel odd-even transposition sort is run with p processes, then after p
phases, the input list will be sorted.

The parallel algorithm is clear to a human computer:

Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

However, there are some details that we need to clear up before we can convert the
algorithm into an MPI program.

First, how do we compute the partner rank? And what is the partner rank when
a process is idle? If the phase is even, then odd-ranked partners exchange with
my rank−1 and even-ranked partners exchange with my rank+1. In odd phases, the
calculations are reversed. However, these calculations can return some invalid ranks:
if my rank = 0 or my rank = comm sz−1, the partner rank can be −1 or comm sz.
But when either partner = −1 or partner = comm sz, the process should be idle.
We can use the rank computed by Compute partner to determine whether a process
is idle:

if (phase % 2 == 0) /∗ Even phase ∗/
if (my rank % 2 != 0) /∗ Odd rank ∗/

partner = my rank − 1;
else /∗ Even rank ∗/

partner = my rank + 1;
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else /∗ Odd phase ∗/
if (my rank % 2 != 0) /∗ Odd rank ∗/

partner = my rank + 1;
else /∗ Even rank ∗/

partner = my rank − 1;
if (partner == −1 | | partner == comm sz)

partner = MPI PROC NULL;

MPI PROC NULL is a constant defined by MPI. When it’s used as the source or destina-
tion rank in a point-to-point communication, no communication will take place and
the call to the communication will simply return.

3.7.3 Safety in MPI programs
If a process is not idle, we might try to implement the communication with a call to
MPI Send and a call to MPI Recv:

MPI Send(my keys, n/comm sz, MPI INT, partner, 0, comm);
MPI Recv(temp keys, n/comm sz, MPI INT, partner, 0, comm,

MPI STATUS IGNORE);

This, however, might result in the programs’ hanging or crashing. Recall that the MPI
standard allows MPI Send to behave in two different ways: it can simply copy the
message into an MPI-managed buffer and return, or it can block until the matching
call to MPI Recv starts. Furthermore, many implementations of MPI set a threshold
at which the system switches from buffering to blocking. That is, messages that are
relatively small will be buffered by MPI Send, but for larger messages, it will block.
If the MPI Send executed by each process blocks, no process will be able to start
executing a call to MPI Recv, and the program will hang or deadlock, that is, each
process is blocked waiting for an event that will never happen.

A program that relies on MPI-provided buffering is said to be unsafe. Such a
program may run without problems for various sets of input, but it may hang or
crash with other sets. If we use MPI Send and MPI Recv in this way, our program
will be unsafe, and it’s likely that for small values of n the program will run without
problems, while for larger values of n, it’s likely that it will hang or crash.

There are a couple of questions that arise here:

1. In general, how can we tell if a program is safe?
2. How can we modify the communication in the parallel odd-even sort program so

that it is safe?

To answer the first question, we can use an alternative to MPI Send defined by the MPI
standard. It’s called MPI Ssend. The extra “s” stands for synchronous and MPI Ssend
is guaranteed to block until the matching receive starts. So, we can check whether
a program is safe by replacing the calls to MPI Send with calls to MPI Ssend. If the
program doesn’t hang or crash when it’s run with appropriate input and comm sz,
then the original program was safe. The arguments to MPI Ssend are the same as the
arguments to MPI Send:
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int MPI Ssend(
void∗ msg buf p /∗ in ∗/,
int msg size /∗ in ∗/,
MPI Datatype msg type /∗ in ∗/,
int dest /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm communicator /∗ in ∗/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q+ 1, except that process comm sz− 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz−1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz−1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz−1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz= 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz= 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void∗ send buf p /∗ in ∗/,
int send buf size /∗ in ∗/,
MPI Datatype send buf type /∗ in ∗/,
int dest /∗ in ∗/,
int send tag /∗ in ∗/,
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FIGURE 3.13

Safe communication with five processes

void∗ recv buf p /∗ out ∗/,
int recv buf size /∗ in ∗/,
MPI Datatype recv buf type /∗ in ∗/,
int source /∗ in ∗/,
int recv tag /∗ in ∗/,
MPI Comm communicator /∗ in ∗/,
MPI Status∗ status p /∗ in ∗/);

This function carries out a blocking send and a receive in a single call. The dest
and the source can be the same or different. What makes it especially useful is that
the MPI implementation schedules the communications so that the program won’t
hang or crash. The complex code we used earlier—the code that checks whether the
process rank is odd or even—can be replaced with a single call to MPI Sendrecv. If
it happens that the send and the receive buffers should be the same, MPI provides the
alternative:

int MPI Sendrecv replace(
void∗ buf p /∗ in/out ∗/,
int buf size /∗ in ∗/,
MPI Datatype buf type /∗ in ∗/,
int dest /∗ in ∗/,
int send tag /∗ in ∗/,
int source /∗ in ∗/,
int recv tag /∗ in ∗/,
MPI Comm communicator /∗ in ∗/,
MPI Status∗ status p /∗ in ∗/);

3.7.4 Final details of parallel odd-even sort
Recall that we had developed the following parallel odd-even transposition sort
algorithm:
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Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

In light of our discussion of safety in MPI, it probably makes sense to implement the
send and the receive with a single call to MPI Sendrecv:

MPI Sendrecv(my keys, n/comm sz, MPI INT, partner, 0,
recv keys, n/comm sz, MPI INT, partner, 0, comm,
MPI Status ignore);

It only remains to identify which keys we keep. Suppose for the moment that
we want to keep the smaller keys. Then we want to keep the smallest n/p keys in a
collection of 2n/p keys. An obvious approach to doing this is to sort (using a serial
sorting algorithm) the list of 2n/p keys and keep the first half of the list. However,
sorting is a relatively expensive operation, and we can exploit the fact that we already
have two sorted lists of n/p keys to reduce the cost by merging the two lists into a
single list. In fact, we can do even better, because we don’t need a fully general
merge: once we’ve found the smallest n/p keys, we can quit. See Program 3.16.

To get the largest n/p keys, we simply reverse the order of the merge, that is, start
with local n−1 and work backwards through the arrays. A final improvement avoids
copying the arrays and simply swaps pointers (see Exercise 3.28).

Run-times for the version of parallel odd-even sort with the “final improvement”
are shown in Table 3.9. Note that if parallel odd-even sort is run on a single processor,
it will use whatever serial sorting algorithm we use to sort the local keys, so the times
for a single process use serial quicksort, not serial odd-even sort, which would be
much slower. We’ll take a closer look at these times in Exercise 3.27.

Table 3.9 Run-Times of Parallel Odd-Even
Sort (times are in milliseconds)

Number of Keys (in thousands)

Processes 200 400 800 1600 3200

1 88 190 390 830 1800
2 43 91 190 410 860
4 22 46 96 200 430
8 12 24 51 110 220
16 7.5 14 29 60 130
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void Merge low(
int my keys[], /∗ in/out ∗/
int recv keys[], /∗ in ∗/
int temp keys[], /∗ scratch ∗/
int local n /∗ = n/p, in ∗/) {

int m i, r i, t i;

m i = r i = t i = 0;
while (t i < local n) {

if (my keys[m i] <= recv keys[r i]) {
temp keys[t i] = my keys[m i];
t i++; m i++;

} else {
temp keys[t i] = recv keys[r i];
t i++; r i++;

}

}

for (m i = 0; m i < local n; m i++)
my keys[m i] = temp keys[m i];

} /∗ Merge low ∗/

Program 3.16: The Merge low function in parallel odd-even transposition sort

3.8 SUMMARY
MPI, or the Message-Passing Interface, is a library of functions that can be called
from C, C++, or Fortran programs. Many systems use mpicc to compile MPI pro-
grams and mpiexec to run them. C MPI programs should include the mpi.h header
file to get function prototypes and macros defined by MPI.

MPI Init does the setup needed to run MPI. It should be called before other MPI
functions are called. When your program doesn’t use argc and argv, NULL can be
passed for both arguments.

In MPI a communicator is a collection of processes that can send messages to
each other. After an MPI program is started, MPI always creates a communicator
consisting of all the processes. It’s called MPI COMM WORLD.

Many parallel programs use the single program, multiple data, or SPMD,
approach, whereby running a single program obtains the effect of running multiple
different programs by including branches on data such as the process rank. When
you’re done using MPI, you should call MPI Finalize.

To send a message from one MPI process to another, you can use MPI Send. To
receive a message, you can use MPI Recv. The arguments to MPI Send describe the
contents of the message and its destination. The arguments to MPI Recv describe
the storage that the message can be received into, and where the message should be
received from. MPI Recv is blocking, that is, a call to MPI Recv won’t return until the
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message has been received (or an error has occurred). The behavior of MPI Send is
defined by the MPI implementation. It can either block, or it can buffer the message.
When it blocks, it won’t return until the matching receive has started. If the message
is buffered, MPI will copy the message into its own private storage, and MPI Send
will return as soon as the message is copied.

When you’re writing MPI programs, it’s important to differentiate between local
and global variables. Local variables have values that are specific to the process on
which they’re defined, while global variables are the same on all the processes. In
the trapezoidal rule program, the total number of trapezoids n was a global variable,
while the left and right endpoints of each process’ interval were local variables.

Most serial programs are deterministic, meaning if we run the same program with
the same input we’ll get the same output. Recall that parallel programs often don’t
possess this property—if multiple processes are operating more or less independently,
the processes may reach various points at different times, depending on events outside
the control of the process. Thus, parallel programs can be nondeterministic, that
is, the same input can result in different outputs. If all the processes in an MPI program
are printing output, the order in which the output appears may be different each time
the program is run. For this reason, it’s common in MPI programs to have a single
process (e.g., process 0) handle all the output. This rule of thumb is usually ignored
during debugging, when we allow each process to print debug information.

Most MPI implementations allow all the processes to print to stdout and stderr.
However, every implementation we’ve encountered only allows at most one process
(usually process 0 in MPI COMM WORLD) to read from stdin.

Collective communications involve all the processes in a communicator, so
they’re different from MPI Send and MPI Recv, which only involve two processes.
To distinguish between the two types of communications, functions such as MPI Send
and MPI Recv are often called point-to-point communications.

Two of the most commonly used collective communication functions are
MPI Reduce and MPI Allreduce. MPI Reduce stores the result of a global opera-
tion (e.g., a global sum) on a single designated process, while MPI Allreduce stores
the result on all the processes in the communicator.

In MPI functions such as MPI Reduce, it may be tempting to pass the same actual
argument to both the input and output buffers. This is called argument aliasing, and
MPI explicitly prohibits aliasing an output argument with another argument.

We learned about a number of other important MPI collective communications:

. MPI Bcast sends data from a single process to all the processes in a communicator.
This is very useful if, for example, process 0 reads data from stdin and the data
needs to be sent to all the processes.. MPI Scatter distributes the elements of an array among the processes. If the array
to be distributed contains n elements, and there are p processes, then the first n/p
are sent to process 0, the next n/p to process 1, and so on.. MPI Gather is the “inverse operation” to MPI Scatter. If each process stores a
subarray containing m elements, MPI Gather will collect all of the elements onto
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a designated process, putting the elements from process 0 first, then the elements
from process 1, and so on.. MPI Allgather is like MPI Gather except that it collects all of the elements onto
all the processes.. MPI Barrier approximately synchronizes the processes; no process can return
from a call to MPI Barrier until all the processes in the communicator have
started the call.

In distributed-memory systems there is no globally shared-memory, so partition-
ing global data structures among the processes is a key issue in writing MPI programs.
For ordinary vectors and arrays, we saw that we could use block partitioning, cyclic
partitioning, or block-cyclic partitioning. If the global vector or array has n compo-
nents and there are p processes, a block partition assigns the first n/p to process 0,
the next n/p to process 1, and so on. A cyclic partition assigns the elements in a
“round-robin” fashion: the first element goes to 0, the next to 1, . . . , the pth to p− 1.
After assigning the first p elements, we return to process 0, so the (p+ 1)st goes to
process 0, the (p+ 2)nd to process 1, and so on. A block-cyclic partition assigns
blocks of elements to the processes in a cyclic fashion.

Compared to operations involving only the CPU and main memory, sending mes-
sages is expensive. Furthermore, sending a given volume of data in fewer messages
is usually less expensive than sending the same volume in more messages. Thus, it
often makes sense to reduce the number of messages sent by combining the con-
tents of multiple messages into a single message. MPI provides three methods for
doing this: the count argument to communication functions, derived datatypes, and
MPI Pack/Unpack. Derived datatypes describe arbitrary collections of data by spec-
ifying the types of the data items and their relative positions in memory. In this
chapter we took a brief look at the use of MPI Type create struct to build a derived
datatype. In the exercises, we’ll explore some other methods, and we’ll take a look at
MPI Pack/Unpack

When we time parallel programs, we’re usually interested in elapsed time or “wall
clock time,” which is the total time taken by a block of code. It includes time in user
code, time in library functions, time in operating system functions started by the
user code, and idle time. We learned about two methods for finding wall clock time:
GET TIME and MPI Wtime. GET TIME is a macro defined in the file timer.h that can
be downloaded from the book’s website. It can be used in serial code as follows:

#include "timer.h" // From the book’s website
. . .
double start, finish, elapsed;
. . .
GET TIME(start);
/∗ Code to be timed ∗/
. . .
GET TIME(finish);
elapsed = finish − start;
printf("Elapsed time = %e seconds\n", elapsed);
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MPI provides a function, MPI Wtime, that can be used instead of GET TIME. In spite
of this, timing parallel code is more complex, since ideally we’d like to synchronize
the processes at the start of the code, and then report the time it took for the “slowest”
process to complete the code. MPI Barrier does a fairly good job of synchronizing
the processes. A process that calls it will block until all the processes in the commu-
nicator have called it. We can use the following template for finding the run-time of
MPI code:

double start, finish, loc elapsed, elapsed;
. . .
MPI Barrier(comm);
start = MPI Wtime();
/∗ Code to be timed ∗/
. . .
finish = MPI Wtime();
loc elapsed = finish − start;
MPI Reduce(&loc elapsed, &elapsed, 1, MPI DOUBLE, MPI MAX,

0, comm);
if (my rank == 0)

printf("Elapsed time = %e seconds\n", elapsed);

A further problem with taking timings lies in the fact that there is ordinarily
considerable variation if the same code is timed repeatedly. For example, the oper-
ating system may idle one or more of our processes so that other processes can run.
Therefore, we typically take several timings and report their minimum.

After taking timings, we can use the speedup or the efficiency to evaluate the
program performance. The speedup is the ratio of the serial run-time to the parallel
run-time, and the efficiency is the speedup divided by the number of parallel pro-
cesses. The ideal value for speedup is p, the number of processes, and the ideal value
for the efficiency is 1. We rarely achieve these ideals, but it’s not uncommon to see
programs that get close to these values, especially when p is small and n, the prob-
lem size, is large. Parallel overhead is the part of the parallel run-time that’s due
to any additional work that isn’t done by the serial program. In MPI programs, par-
allel overhead will come from communication. When p is large and n is small, it’s
not unusual for parallel overhead to dominate the total run-time and speedups and
efficiencies can be quite low. If it’s possible to increase the problem size (n) so that
the efficiency doesn’t decrease as p is increased, a parallel program is said to be
scalable.

Recall that MPI Send can either block or buffer its input. An MPI program is
unsafe if its correct behavior depends on the fact that MPI Send is buffering its input.
This typically happens when multiple processes first call MPI Send and then call
MPI Recv. If the calls to MPI Send don’t buffer the messages, then they’ll block until
the matching calls to MPI Recv have started. However, this will never happen. For
example, if both process 0 and process 1 want to send data to each other, and both
send first and then receive, process 0 will wait forever for process 1 to call MPI Recv,
since process 1 is blocked in MPI Send, and process 1 will wait forever for process 0.
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That is, the processes will hang or deadlock—they’ll block forever waiting for events
that will never happen.

An MPI program can be checked for safety by replacing each call to MPI Send
with a call to MPI Ssend. MPI Ssend takes the same arguments as MPI Send, but it
always blocks until the matching receive has started. The extra “s” stands for syn-
chronous. If the program completes correctly with MPI Ssend for the desired inputs
and communicator sizes, then the program is safe.

An unsafe MPI program can be made safe in several ways. The programmer can
schedule the calls to MPI Send and MPI Recv so that some processes (e.g., even-
ranked processes) first call MPI Send while others (e.g., odd-ranked processes) first
call MPI Recv. Alternatively, we can use MPI Sendrecv or MPI Sendrecv replace.
These functions execute both a send and a receive, but they’re guaranteed to schedule
them so that the program won’t hang or crash. MPI Sendrecv uses different argu-
ments for the send and the receive buffers, while MPI Sendrecv replace uses the
same buffer for both.

3.9 EXERCISES

3.1. What happens in the greetings program if, instead of strlen(greeting) + 1,
we use strlen(greeting) for the length of the message being sent by pro-
cesses 1,2, . . . , comm sz−1? What happens if we use MAX STRING instead of
strlen(greeting) + 1? Can you explain these results?

3.2. Modify the trapezoidal rule so that it will correctly estimate the integral even
if comm sz doesn’t evenly divide n. (You can still assume that n≥ comm sz.)

3.3. Determine which of the variables in the trapezoidal rule program are local and
which are global.

3.4. Modify the program that just prints a line of output from each process
(mpi output.c) so that the output is printed in process rank order: process
0s output first, then process 1s, and so on.

3.5. In a binary tree, there is a unique shortest path from each node to the root. The
length of this path is often called the depth of the node. A binary tree in which
every nonleaf has two children is called a full binary tree, and a full binary tree
in which every leaf has the same depth is sometimes called a complete binary
tree. See Figure 3.14. Use the principle of mathematical induction to prove
that if T is a complete binary tree with n leaves, then the depth of the leaves
is log2(n).

3.6. Suppose comm sz= 4 and suppose that x is a vector with n= 14 components.
a. How would the components of x be distributed among the processes in a

program that used a block distribution?
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FIGURE 3.14

A complete binary tree

b. How would the components of x be distributed among the processes in a
program that used a cyclic distribution?

c. How would the components of x be distributed among the processes in a
program that used a block-cyclic distribution with blocksize b= 2?

You should try to make your distributions general so that they could be used
regardless of what comm sz and n are. You should also try to make your distri-
butions “fair” so that if q and r are any two processes, the difference between
the number of components assigned to q and the number of components
assigned to r is as small as possible.

3.7. What do the various MPI collective functions do if the communicator contains
a single process?

3.8. Suppose comm sz= 8 and n= 16.
a. Draw a diagram that shows how MPI Scatter can be implemented using

tree-structured communication with comm sz processes when process 0
needs to distribute an array containing n elements.

b. Draw a diagram that shows how MPI Gather can be implemented using
tree-structured communication when an n-element array that has been
distributed among comm sz processes needs to be gathered onto process 0.

3.9. Write an MPI program that implements multiplication of a vector by a scalar
and dot product. The user should enter two vectors and a scalar, all of which
are read in by process 0 and distributed among the processes. The results are
calculated and collected onto process 0, which prints them. You can assume
that n, the order of the vectors, is evenly divisible by comm sz.

3.10. In the Read vector function shown in Program 3.9, we use local n as
the actual argument for two of the formal arguments to MPI Scatter:
send count and recv count. Why is it OK to alias these arguments?
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3.11. Finding prefix sums is a generalization of global sum. Rather than simply
finding the sum of n values,

x0+ x1+ ·· ·+ xn−1,

the prefix sums are the n partial sums

x0, x0+ x1, x0+ x1+ x2, . . . , x0+ x1+ ·· ·+ xn−1.

a. Devise a serial algorithm for computing the n prefix sums of an array with
n elements.

b. Parallelize your serial algorithm for a system with n processes, each of
which is storing one of the x is.

c. Suppose n= 2k for some positive integer k. Can you devise a serial algo-
rithm and a parallelization of the serial algorithm so that the parallel
algorithm requires only k communication phases?

d. MPI provides a collective communication function, MPI Scan, that can be
used to compute prefix sums:

int MPI Scan(
void∗ sendbuf p /∗ in ∗/,
void∗ recvbuf p /∗ out ∗/,
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Op op /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

It operates on arrays with count elements; both sendbuf p and recvbuf p
should refer to blocks of count elements of type datatype. The op argu-
ment is the same as op for MPI Reduce. Write an MPI program that
generates a random array of count elements on each MPI process, finds
the prefix sums, and prints the results.

3.12. An alternative to a butterfly-structured allreduce is a ring-pass structure. In a
ring-pass, if there are p processes, each process q sends data to process q+ 1,
except that process p− 1 sends data to process 0. This is repeated until each
process has the desired result. Thus, we can implement allreduce with the
following code:

sum = temp val = my val;
for (i = 1; i < p; i++) {

MPI Sendrecv replace(&temp val, 1, MPI INT, dest,
sendtag, source, recvtag, comm, &status);

sum += temp val;
}

a. Write an MPI program that implements this algorithm for allreduce. How
does its performance compare to the butterfly-structured allreduce?

b. Modify the MPI program you wrote in the first part so that it implements
prefix sums.
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3.13. MPI Scatter and MPI Gather have the limitation that each process must send
or receive the same number of data items. When this is not the case, we
must use the MPI functions MPI Gatherv and MPI Scatterv. Look at the
man pages for these functions, and modify your vector sum, dot product pro-
gram so that it can correctly handle the case when n isn’t evenly divisible by
comm sz.

3.14. a. Write a serial C program that defines a two-dimensional array in the main
function. Just use numeric constants for the dimensions:

int two d[3][4];

Initialize the array in the main function. After the array is initialized, call
a function that attempts to print the array. The prototype for the function
should look something like this.

void Print two d(int two d[][], int rows, int cols);

After writing the function try to compile the program. Can you explain
why it won’t compile?

b. After consulting a C reference (e.g., Kernighan and Ritchie [29]), modify
the program so that it will compile and run, but so that it still uses a two-
dimensional C array.

3.15. What is the relationship between the “row-major” storage for two-
dimensional arrays that we discussed in Section 2.2.3 and the one-dimensional
storage we use in Section 3.4.9?

3.16. Suppose comm sz= 8 and the vector x= (0,1,2, . . . ,15) has been distributed
among the processes using a block distribution. Draw a diagram illustrating
the steps in a butterfly implementation of allgather of x.

3.17. MPI Type contiguous can be used to build a derived datatype from a
collection of contiguous elements in an array. Its syntax is

int MPI Type contiguous(
int count /∗ in ∗/,
MPI Datatype old mpi t /∗ in ∗/,
MPI Datatype∗ new mpi t p /∗ out ∗);

Modify the Read vector and Print vector functions so that they use
an MPI datatype created by a call to MPI Type contiguous and a count
argument of 1 in the calls to MPI Scatter and MPI Gather.

3.18. MPI Type vector can be used to build a derived datatype from a collection
of blocks of elements in an array as long as the blocks all have the same size
and they’re equally spaced. Its syntax is

int MPI Type vector(
int count /∗ in ∗/,
int blocklength /∗ in ∗/,
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int stride /∗ in ∗/,
MPI Datatype old mpi t /∗ in ∗/,
MPI Datatype∗ new mpi t p /∗ out ∗/);

For example, if we had an array x of 18 doubles and we wanted to build a
type corresponding to the elements in positions 0, 1, 6, 7, 12, 13, we could
call

int MPI Type vector(3, 2, 6, MPI DOUBLE, &vect mpi t);

since the type consists of 3 blocks, each of which has 2 elements, and the
spacing between the starts of the blocks is 6 doubles.

Write Read vector and Print vector functions that will allow process
0 to read and print, respectively, a vector with a block-cyclic distribution. But
beware! Do not use MPI Scatter or MPI Gather. There is a technical issue
involved in using these functions with types created with MPI Type vector.
(See, for example, [23].) Just use a loop of sends on process 0 in Read vector
and a loop of receives on process 0 in Print vector. The other processes
should be able to complete their calls to Read vector and Print vector
with a single call to MPI Recv and MPI Send. The communication on process
0 should use a derived datatype created by MPI Type vector. The calls on
the other processes should just use the count argument to the communica-
tion function, since they’re receiving/sending elements that they will store in
contiguous array locations.

3.19. MPI Type indexed can be used to build a derived datatype from arbitrary
array elements. Its syntax is

int MPI Type indexed(
int count /∗ in ∗/,
int array of blocklengths[] /∗ in ∗/,
int array of displacements[] /∗ in ∗/,
MPI Datatype old mpi t /∗ in ∗/,
MPI Datatype∗ new mpi t p) /∗ out ∗/);

Unlike MPI Type create struct, the displacements are measured in units of
old mpi t—not bytes. Use MPI Type indexed to create a derived datatype
that corresponds to the upper triangular part of a square matrix. For example,
in the 4× 4 matrix 

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15


the upper triangular part is the elements 0,1,2,3,5,6,7,10,11,15. Process
0 should read in an n× n matrix as a one-dimensional array, create the
derived datatype, and send the upper triangular part with a single call to
MPI Send. Process 1 should receive the upper triangular part with a single
call to MPI Recv and then print the data it received.
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3.20. The functions MPI Pack and MPI Unpack provide an alternative to derived
datatypes for grouping data. MPI Pack copies the data to be sent, one block at
a time, into a user-provided buffer. The buffer can then be sent and received.
After the data is received, MPI Unpack can be used to unpack it from the
receive buffer. The syntax of MPI Pack is

int MPI Pack(
void∗ in buf /∗ in ∗/,
int in buf count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
void∗ pack buf /∗ out ∗/,
int pack buf sz /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
MPI Comm comm /∗ in ∗/);

We could therefore pack the input data to the trapezoidal rule program with
the following code:

char pack buf[100];
int position = 0;

MPI Pack(&a, 1, MPI DOUBLE, pack buf, 100, &position, comm);
MPI Pack(&b, 1, MPI DOUBLE, pack buf, 100, &position, comm);
MPI Pack(&n, 1, MPI INT, pack buf, 100, &position, comm);

The key is the position argument. When MPI Pack is called, position should
refer to the first available slot in pack buf. When MPI Pack returns, it refers
to the first available slot after the data that was just packed, so after process 0
executes this code, all the processes can call MPI Bcast:

MPI Bcast(pack buf, 100, MPI PACKED, 0, comm);

Note that the MPI datatype for a packed buffer is MPI PACKED. Now the other
processes can unpack the data using: MPI Unpack:

int MPI Unpack(
void∗ pack buf /∗ in ∗/,
int pack buf sz /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
void∗ out buf /∗ out ∗/,
int out buf count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

This can be used by “reversing” the steps in MPI Pack, that is, the data is
unpacked one block at a time starting with position = 0.

Write another Get input function for the trapezoidal rule program. This
one should use MPI Pack on process 0 and MPI Unpack on the other processes.

3.21. How does your system compare to ours? What run-times does your system
get for matrix-vector multiplication? What kind of variability do you see in
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the times for a given value of comm sz and n? Do the results tend to cluster
around the minimum, the mean, or the median?

3.22. Time our implementation of the trapezoidal rule that uses MPI Reduce. How
will you choose n, the number of trapezoids? How do the minimum times
compare to the mean and median times? What are the speedups? What are the
efficiencies? On the basis of the data you collected, would you say that the
trapezoidal rule is scalable?

3.23. Although we don’t know the internals of the implementation of MPI Reduce,
we might guess that it uses a structure similar to the binary tree we discussed.
If this is the case, we would expect that its run-time would grow roughly at
the rate of log2(p), since there are roughly log2(p) levels in the tree. (Here,
p= comm sz.) Since the run-time of the serial trapezoidal rule is roughly pro-
portional to n, the number of trapezoids, and the parallel trapezoidal rule
simply applies the serial rule to n/p trapezoids on each process, with our
assumption about MPI Reduce, we get a formula for the overall run-time of
the parallel trapezoidal rule that looks like

Tparallel(n,p)≈ a×
n

p
+ b log2(p)

for some constants a and b.
a. Use the formula, the times you’ve taken in Exercise 3.22, and your favorite

program for doing mathematical calculations (e.g., MATLAB
R©

) to get a
least-squares estimate of the values of a and b.

b. Comment on the quality of the predicted run-times using the formula and
the values for a and b computed in part (a).

3.24. Take a look at Programming Assignment 3.7. The code that we outlined for
timing the cost of sending messages should work even if the count argument
is zero. What happens on your system when the count argument is 0? Can
you explain why you get a nonzero elapsed time when you send a zero-byte
message?

3.25. If comm sz= p, we mentioned that the “ideal” speedup is p. Is it possible to
do better?
a. Consider a parallel program that computes a vector sum. If we only time

the vector sum—that is, we ignore input and output of the vectors—how
might this program achieve speedup greater than p?

b. A program that achieves speedup greater than p is said to have super-
linear speedup. Our vector sum example only achieved superlinear
speedup by overcoming certain “resource limitations.” What were these
resource limitations? Is it possible for a program to obtain superlinear
speedup without overcoming resource limitations?
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3.26. Serial odd-even transposition sort of an n-element list can sort the list in con-
siderably fewer than n phases. As an extreme example, if the input list is
already sorted, the algorithm requires 0 phases.
a. Write a serial Is sorted function that determines whether a list is sorted.
b. Modify the serial odd-even transposition sort program so that it checks

whether the list is sorted after each phase.
c. If this program is tested on a random collection of n-element lists, roughly

what fraction get improved performance by checking whether the list is
sorted?

3.27. Find the speedups and efficiencies of the parallel odd-even sort. Does the
program obtain linear speedups? Is it scalable? Is it strongly scalable? Is it
weakly scalable?

3.28. Modify the parallel odd-even transposition sort so that the Merge functions
simply swap array pointers after finding the smallest or largest elements. What
effect does this change have on the overall run-time?

3.10 PROGRAMMING ASSIGNMENTS

3.1. Use MPI to implement the histogram program discussed in Section 2.7.1. Have
process 0 read in the input data and distribute it among the processes. Also have
process 0 print out the histogram.

3.2. Suppose we toss darts randomly at a square dartboard, whose bullseye is at the
origin, and whose sides are 2 feet in length. Suppose also that there’s a circle
inscribed in the square dartboard. The radius of the circle is 1 foot, and it’s area
is π square feet. If the points that are hit by the darts are uniformly distributed
(and we always hit the square), then the number of darts that hit inside the circle
should approximately satisfy the equation

number in circle

total number of tosses
=
π

4
,

since the ratio of the area of the circle to the area of the square is π/4.
We can use this formula to estimate the value of π with a random number

generator:

number in circle = 0;
for (toss = 0; toss < number of tosses; toss++) {

x = random double between −1 and 1;
y = random double between −1 and 1;
distance squared = x∗x + y∗y;
if (distance squared <= 1) number in circle++;

}

pi estimate = 4∗number in circle/((double) number of tosses);
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This is called a “Monte Carlo” method, since it uses randomness (the dart
tosses).

Write an MPI program that uses a Monte Carlo method to estimate π .
Process 0 should read in the total number of tosses and broadcast it to the
other processes. Use MPI Reduce to find the global sum of the local variable
number in circle, and have process 0 print the result. You may want to use
long long ints for the number of hits in the circle and the number of tosses,
since both may have to be very large to get a reasonable estimate of π .

3.3. Write an MPI program that computes a tree-structured global sum. First write
your program for the special case in which comm sz is a power of two. Then,
after you’ve gotten this version working, modify your program so that it can
handle any comm sz.

3.4. Write an MPI program that computes a global sum using a butterfly. First write
your program for the special case in which comm sz is a power of two. Can you
modify your program so that it will handle any number of processes?

3.5. Implement matrix-vector multiplication using a block-column distribution of
the matrix. You can have process 0 read in the matrix and simply use a loop
of sends to distribute it among the processes. Assume the matrix is square of
order n and that n is evenly divisible by comm sz. You may want to look at the
MPI function MPI Reduce scatter.

3.6. Implement matrix-vector multiplication using a block-submatrix distribution
of the matrix. Assume that the vectors are distributed among the diagonal pro-
cesses. Once again, you can have process 0 read in the matrix and aggregate
the sub-matrices before sending them to the processes. Assume comm sz is a
perfect square and that

√
comm sz evenly divides the order of the matrix.

3.7. A ping-pong is a communication in which two messages are sent, first from
process A to process B (ping) and then from process B back to process A
(pong). Timing blocks of repeated ping-pongs is a common way to estimate
the cost of sending messages. Time a ping-pong program using the C clock
function on your system. How long does the code have to run before clock
gives a nonzero run-time? How do the times you got with the clock function
compare to times taken with MPI Wtime?

3.8. Parallel merge sort starts with n/comm sz keys assigned to each process. It ends
with all the keys stored on process 0 in sorted order. To achieve this, it uses
the same tree-structured communication that we used to implement a global
sum. However, when a process receives another process’ keys, it merges the
new keys into its already sorted list of keys. Write a program that implements
parallel mergesort. Process 0 should read in n and broadcast it to the other
processes. Each process should use a random number generator to create a
local list of n/comm sz ints. Each process should then sort its local list, and
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process 0 should gather and print the local lists. Then the processes should use
tree-structured communication to merge the global list onto process 0, which
prints the result.

3.9. Write a program that can be used to determine the cost of changing the dis-
tribution of a distributed data structure. How long does it take to change from
a block distribution of a vector to a cyclic distribution? How long does the
reverse redistribution take?
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CHAPTER

4Shared-Memory
Programming with Pthreads

Recall that from a programmer’s point of view a shared-memory system is one in
which all the cores can access all the memory locations (see Figure 4.1). Thus, an
obvious approach to the problem of coordinating the work of the cores is to specify
that certain memory locations are “shared.” This is a very natural approach to parallel
programming. Indeed, we might well wonder why all parallel programs don’t use this
shared-memory approach. However, we’ll see in this chapter that there are problems
in programming shared-memory systems, problems that are often different from the
problems encountered in distributed-memory programming.

For example, in Chapter 2 we saw that if different cores attempt to update a
single shared-memory location, then the contents of the shared location can be unpre-
dictable. The code that updates the shared location is an example of a critical section.
We’ll see some other examples of critical sections, and we’ll learn several methods
for controlling access to a critical section.

We’ll also learn about other issues and techniques in shared-memory program-
ming. In shared-memory programming, an instance of a program running on a
processor is usually called a thread (unlike MPI, where it’s called a process). We’ll
learn how to synchronize threads so that each thread will wait to execute a block
of statements until another thread has completed some work. We’ll learn how to
put a thread “to sleep” until a condition has occurred. We’ll see that there are some
circumstances in which it may at first seem that a critical section must be quite large.
However, we’ll also see that there are tools that sometimes allow us to “fine-tune”
access to these large blocks of code so that more of the program can truly be executed
in parallel. We’ll see that the use of cache memories can actually cause a shared-
memory program to run more slowly. Finally, we’ll see that functions that “maintain
state” between successive calls can cause inconsistent or even incorrect results.

In this chapter we’ll be using POSIX
R©

threads for most of our shared-memory
functions. In the next chapter we’ll look at an alternative approach to shared-memory
programming called OpenMP.

4.1 PROCESSES, THREADS, AND PTHREADS
Recall from Chapter 2 that in shared-memory programming, a thread is somewhat
analogous to a process in MPI programming. However, it can, in principle, be

Copyright c© 2011 Elsevier Inc. All rights reserved.
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FIGURE 4.1

A shared-memory system

“lighter-weight.” A process is an instance of a running (or suspended) program. In
addition to its executable, it consists of the following:

. A block of memory for the stack. A block of memory for the heap. Descriptors of resources that the system has allocated for the process—for
example, file descriptors. Security information—for example, information about which hardware and soft-
ware resources the process can access. Information about the state of the process, such as whether the process is ready to
run or is waiting on a resource, the content of the registers including the program
counter, and so on

In most systems, by default, a process’ memory blocks are private: another process
can’t directly access the memory of a process unless the operating system intervenes.
This makes sense. If you’re using a text editor to write a program (one process—
the running text editor), you don’t want your browser (another process) overwriting
your text editor’s memory. This is even more crucial in a multiuser environment.
One user’s processes shouldn’t be allowed access to the memory of another user’s
processes.

However, this isn’t what we want when we’re running shared-memory programs.
At a minimum, we’d like certain variables to be available to multiple processes, so
shared-memory “processes” typically allow much easier access to each others’ mem-
ory. They also often share things such as access to stdout. In fact, it’s conceivable
that they share pretty much everything that’s process specific, except their stacks and
their program counters. This can be relatively easily arranged by starting a single
process and then having the process start these “lighter-weight” processes. For this
reason, they’re often called light-weight processes.

The more commonly used term, thread, comes from the concept of “thread of
control.” A thread of control is just a sequence of statements in a program. The term
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suggests a stream of control in a single process, and in a shared-memory program a
single process may have multiple threads of control.

As we noted earlier, in this chapter the particular implementation of threads that
we’ll be using is called POSIX threads or, more often, Pthreads. POSIX [41] is
a standard for Unix-like operating systems—for example, Linux and Mac OS X.
It specifies a variety of facilities that should be available in such systems. In par-
ticular, it specifies an application programming interface (API) for multithreaded
programming.

Pthreads is not a programming language (such as C or Java). Rather, like MPI,
Pthreads specifies a library that can be linked with C programs. Unlike MPI, the
Pthreads API is only available on POSIX systems—Linux, Mac OS X, Solaris,
HPUX, and so on. Also unlike MPI, there are a number of other widely used spec-
ifications for multithreaded programming: Java threads, Windows threads, Solaris
threads. However, all of the thread specifications support the same basic ideas, so
once you’ve learned how to program in Pthreads, it won’t be difficult to learn how to
program another thread API.

Since Pthreads is a C library, it can, in principle, be used in C++ programs.
However, there is an effort underway to develop a C++ standard (C++0x) for shared-
memory programming. It may make sense to use it rather than Pthreads if you’re
writing C++ programs.

4.2 HELLO, WORLD
Let’s get started. Let’s take a look at a Pthreads program. Program 4.1 shows a
program in which the main function starts up several threads. Each thread prints a
message and then quits.

4.2.1 Execution
The program is compiled like an ordinary C program, with the possible exception
that we may need to link in the Pthreads library:1

$ gcc −g −Wall −o pth hello pth hello.c −lpthread

The −lpthread tells the compiler that we want to link in the Pthreads library.
Note that it’s −lpthread, not −lpthreads. On some systems the compiler will
automatically link in the library, and −lpthread won’t be needed.

To run the program, we just type

$ ./pth hello <number of threads>

1Recall that the dollar sign ($) is the shell prompt, so it shouldn’t be typed in. Also recall that for the
sake of explicitness, we assume that we’re using the Gnu C compiler, gcc, and we always use the
options −g, −Wall, and −o. See Section 2.9 for further information.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 /∗ Global variable: accessible to all threads ∗/
6 int thread count;
7
8 void∗ Hello(void∗ rank); /∗ Thread function ∗/
9

10 int main(int argc, char∗ argv[]) {
11 long thread; /∗ Use long in case of a 64−bit system ∗/
12 pthread t∗ thread handles;
13
14 /∗ Get number of threads from command line ∗/
15 thread count = strtol(argv[1], NULL, 10);
16
17 thread handles = malloc (thread count∗sizeof(pthread t));
18
19 for (thread = 0; thread < thread count; thread++)
20 pthread create(&thread handles[thread], NULL,
21 Hello, (void∗) thread);
22
23 printf("Hello from the main thread\n");
24
25 for (thread = 0; thread < thread count; thread++)
26 pthread join(thread handles[thread], NULL);
27
28 free(thread handles);
29 return 0;
30 } /∗ main ∗/
31
32 void∗ Hello(void∗ rank) {
33 long my rank = (long) rank

/∗ Use long in case of 64−bit system ∗/
34
35 printf("Hello from thread %ld of %d\n", my rank,

thread count);
36
37 return NULL;
38 } /∗ Hello ∗/

Program 4.1: A Pthreads “hello, world” program

For example, to run the program with one thread, we type

$ ./pth hello 1

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 1
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To run the program with four threads, we type

$ ./pth hello 4

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

4.2.2 Preliminaries
Let’s take a closer look at the source code in Program 4.1. First notice that this is just
a C program with a main function and one other function. The program includes the
familiar stdio.h and stdlib.h header files. However, there’s a lot that’s new and
different. In Line 3 we include pthread.h, the Pthreads header file, which declares
the various Pthreads functions, constants, types, and so on.

In Line 6 we define a global variable thread count. In Pthreads programs, global
variables are shared by all the threads. Local variables and function arguments—that
is, variables declared in functions—are (ordinarily) private to the thread executing the
function. If several threads are executing the same function, each thread will have its
own private copies of the local variables and function arguments. This makes sense
if you recall that each thread has its own stack.

We should keep in mind that global variables can introduce subtle and confusing
bugs. For example, suppose we write a program in which we declare a global variable
int x. Then we write a function f in which we intend to use a local variable called
x, but we forget to declare it. The program will compile with no warnings, since f
has access to the global x. But when we run the program, it produces very strange
output, which we eventually determine to have been caused by the fact that the
global variable x has a strange value. Days later, we finally discover that the strange
value came from f. As a rule of thumb, we should try to limit our use of global
variables to situations in which they’re really needed—for example, for a shared
variable.

In Line 15 the program gets the number of threads it should start from the com-
mand line. Unlike MPI programs, Pthreads programs are typically compiled and
run just like serial programs, and one relatively simple way to specify the number
of threads that should be started is to use a command-line argument. This isn’t a
requirement, it’s simply a convenient convention we’ll be using.

The strtol function converts a string into a long int. It’s declared in stdlib.h,
and its syntax is

long strtol(
const char∗ number p /∗ in ∗/,
char∗∗ end p /∗ out ∗/,
int base /∗ in ∗/);
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It returns a long int corresponding to the string referred to by number p. The
base of the representation of the number is given by the base argument. If end p
isn’t NULL, it will point to the first invalid (that is, nonnumeric) character in
number p.

4.2.3 Starting the threads
As we already noted, unlike MPI programs, in which the processes are usually started
by a script, in Pthreads the threads are started by the program executable. This intro-
duces a bit of additional complexity, as we need to include code in our program to
explicitly start the threads, and we need data structures to store information on the
threads.

In Line 17 we allocate storage for one pthread t object for each thread. The
pthread t data structure is used for storing thread-specific information. It’s declared
in pthread.h.

The pthread t objects are examples of opaque objects. The actual data that
they store is system specific, and their data members aren’t directly accessible to
user code. However, the Pthreads standard guarantees that a pthread t object does
store enough information to uniquely identify the thread with which it’s associated.
So, for example, there is a Pthreads function that a thread can use to retrieve its
associated pthread t object, and there is a Pthreads function that can determine
whether two threads are in fact the same by examining their associated pthread t
objects.

In Lines 19–21, we use the pthread create function to start the threads. Like
most Pthreads functions, its name starts with the string pthread . The syntax of
pthread create is

int pthread create(
pthread t∗ thread p /∗ out ∗/,
const pthread attr t∗ attr p /∗ in ∗/,
void∗ (∗start routine)(void∗) /∗ in ∗/,
void∗ arg p /∗ in ∗/);

The first argument is a pointer to the appropriate pthread t object. Note that the
object is not allocated by the call to pthread create; it must be allocated before
the call. We won’t be using the second argument, so we just pass the argument NULL
in our function call. The third argument is the function that the thread is to run, and
the last argument is a pointer to the argument that should be passed to the function
start routine. The return value for most Pthreads functions indicates if there’s
been an error in the function call. In order to reduce the clutter in our examples,
in this chapter (as in most of the rest of the book) we’ll generally ignore the return
values of Pthreads functions.

Let’s take a closer look at the last two arguments. The function that’s started by
pthread create should have a prototype that looks something like this:

void∗ thread function(void∗ args p);
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Recall that the type void∗ can be cast to any pointer type in C, so args p
can point to a list containing one or more values needed by thread function.
Similarly, the return value of thread function can point to a list of one or more
values. In our call to pthread create, the final argument is a fairly common kluge:
we’re effectively assigning each thread a unique integer rank. Let’s first look at why
we are doing this; then we’ll worry about the details of how to do it.

Consider the following problem: We start a Pthreads program that uses two
threads, but one of the threads encounters an error. How do we, the users, know
which thread encountered the error? We can’t just print out the pthread t object,
since it’s opaque. However, if when we start the threads, we assign the first thread
rank 0, and the second thread rank 1, we can easily determine which thread ran into
trouble by just including the thread’s rank in the error message.

Since the thread function takes a void∗ argument, we could allocate one int
in main for each thread and assign each allocated int a unique value. When we
start a thread, we could then pass a pointer to the appropriate int in the call to
pthread create. However, most programmers resort to some trickery with casts.
Instead of creating an int in main for the “rank,” we cast the loop variable thread
to have type void∗. Then in the thread function, hello, we cast the argument back to
a long (Line 33).

The result of carrying out these casts is “system-defined,” but most C compilers
do allow this. However, if the size of pointer types is different from the size of the
integer type you use for the rank, you may get a warning. On the machines we used,
pointers are 64 bits, and ints are only 32 bits, so we use long instead of int.

Note that our method of assigning thread ranks and, indeed, the thread ranks them-
selves are just a convenient convention that we’ll use. There is no requirement that a
thread rank be passed in the call to pthread create. Indeed there’s no requirement
that a thread be assigned a rank.

Also note that there is no technical reason for each thread to run the same function;
we could have one thread run hello, another run goodbye, and so on. However, as
with the MPI programs, we’ll typically use “single program, multiple data” style
parallelism with our Pthreads programs. That is, each thread will run the same thread
function, but we’ll obtain the effect of different thread functions by branching within
a thread.

4.2.4 Running the threads
The thread that’s running the main function is sometimes called the main thread.
Hence, after starting the threads, it prints the message

Hello from the main thread

In the meantime, the threads started by the calls to pthread create are also
running. They get their ranks by casting in Line 33, and then print their messages.
Note that when a thread is done, since the type of its function has a return value, the
thread should return something. In this example, the threads don’t actually need to
return anything, so they return NULL.
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Thread 0

Thread 1

Main

FIGURE 4.2

Main thread forks and joins two threads

In Pthreads, the programmer doesn’t directly control where the threads are run.2

There’s no argument in pthread create saying which core should run which thread.
Thread placement is controlled by the operating system. Indeed, on a heavily loaded
system, the threads may all be run on the same core. In fact, if a program starts more
threads than cores, we should expect multiple threads to be run on a single core.
However, if there is a core that isn’t being used, operating systems will typically
place a new thread on such a core.

4.2.5 Stopping the threads
In Lines 25 and 26, we call the function pthread join once for each thread. A single
call to pthread join will wait for the thread associated with the pthread t object
to complete. The syntax of pthread join is

int pthread join(
pthread t thread /∗ in ∗/,
void∗∗ ret val p /∗ out ∗/);

The second argument can be used to receive any return value computed by the thread.
So in our example, each thread executes a return and, eventually, the main thread
will call pthread join for that thread to complete the termination.

This function is called pthread join because of a diagramming style that is often
used to describe the threads in a multithreaded process. If we think of the main thread
as a single line in our diagram, then, when we call pthread create, we can create
a branch or fork off the main thread. Multiple calls to pthread create will result
in multiple branches or forks. Then, when the threads started by pthread create
terminate, the diagram shows the branches joining the main thread. See Figure 4.2.

4.2.6 Error checking
In the interest of keeping the program compact and easy to read, we have resisted
the temptation to include many details that would therefore be important in a “real”
program. The most likely source of problems in this example (and in many programs)
is the user input or lack of it. It would therefore be a very good idea to check that the
program was started with command line arguments, and, if it was, to check the actual

2Some systems (for example, some implementations of Linux) do allow the programmer to specify
where a thread is run. However, these constructions will not be portable.
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value of the number of threads to see if it’s reasonable. If you visit the book’s website,
you can download a version of the program that includes this basic error checking.

It may also be a good idea to check the error codes returned by the Pthreads
functions. This can be especially useful when you’re just starting to use Pthreads and
some of the details of function use aren’t completely clear.

4.2.7 Other approaches to thread startup
In our example, the user specifies the number of threads to start by typing in a
command-line argument. The main thread then creates all of the “subsidiary” threads.
While the threads are running, the main thread prints a message, and then waits for
the other threads to terminate. This approach to threaded programming is very similar
to our approach to MPI programming, in which the MPI system starts a collection of
processes and waits for them to complete.

There is, however, a very different approach to the design of multithreaded pro-
grams. In this approach, subsidiary threads are only started as the need arises. As
an example, imagine a Web server that handles requests for information about high-
way traffic in the San Francisco Bay Area. Suppose that the main thread receives the
requests and subsidiary threads actually fulfill the requests. At 1 o’clock on a typical
Tuesday morning, there will probably be very few requests, while at 5 o’clock on a
typical Tuesday evening, there will probably be thousands of requests. Thus, a natural
approach to the design of this Web server is to have the main thread start subsidiary
threads when it receives requests.

Now, we do need to note that thread startup necessarily involves some overhead.
The time required to start a thread will be much greater than, say, a floating point
arithmetic operation, so in applications that need maximum performance the “start
threads as needed” approach may not be ideal. In such a case, it may make sense
to use a somewhat more complicated scheme—a scheme that has characteristics
of both approaches. Our main thread can start all the threads it anticipates need-
ing at the beginning of the program (as in our example program). However, when a
thread has no work, instead of terminating, it can sit idle until more work is avail-
able. In Programming Assignment 4.5 we’ll look at how we might implement such a
scheme.

4.3 MATRIX-VECTOR MULTIPLICATION
Let’s take a look at writing a Pthreads matrix-vector multiplication program. Recall
that if A= (aij) is an m× n matrix and x= (x0,x1, . . . ,xn−1)

T is an n-dimensional
column vector,3 then the matrix-vector product Ax= y is an m-dimensional column
vector, y= (y0,y1, . . . ,ym−1)

T in which the ith component yi is obtained by finding

3Recall that we use the convention that matrix and vector subscripts start with 0. Also recall that if b is
a matrix or a vector, then bT denotes its transpose.
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FIGURE 4.3

Matrix-vector multiplication

the dot product of the ith row of A with x:

yi =

n−1∑
j=0

aijxj.

See Figure 4.3. Thus, pseudo-code for a serial program for matrix-vector multipli-
cation might look like this:

/∗ For each row of A ∗/
for (i = 0; i < m; i++) {

y[i] = 0.0;
/∗ For each element of the row and each element of x ∗/
for (j = 0; j < n; j++)

y[i] += A[i][j]∗ x[j];
}

We want to parallelize this by dividing the work among the threads. One pos-
sibility is to divide the iterations of the outer loop among the threads. If we do
this, each thread will compute some of the components of y. For example, suppose
that m= n= 6 and the number of threads, thread count or t, is three. Then the
computation could be divided among the threads as follows:

Thread Components of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y[0] = 0.0;
for (j = 0; j < n; j++)

y[0] += A[0][j]∗ x[j];

Thread 0 will therefore need to access every element of row 0 of A and every element
of x. More generally, the thread that has been assigned y[i] will need to execute
the code
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y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]∗x[j];

Thus, this thread will need to access every element of row i of A and every element of x.
We see that each thread needs to access every component of x, while each thread only
needs to access its assigned rows of A and assigned components of y. This suggests
that, at a minimum, x should be shared. Let’s also make A and y shared. This might
seem to violate our principle that we should only make variables global that need to
be global. However, in the exercises, we’ll take a closer look at some of the issues
involved in making the A and y variables local to the thread function, and we’ll see
that making them global can make good sense. At this point, we’ll just observe that if
they are global, the main thread can easily initialize all of A by just reading its entries
from stdin, and the product vector y can be easily printed by the main thread.

Having made these decisions, we only need to write the code that each thread
will use for deciding which components of y it will compute. In order to simplify
the code, let’s assume that both m and n are evenly divisible by t. Our example with
m= 6 and t = 3 suggests that each thread gets m/t components. Furthermore, thread
0 gets the first m/t, thread 1 gets the next m/t, and so on. Thus, the formulas for the
components assigned to thread q might be

first component: q×
m

t

and

last component: (q+ 1)×
m

t
− 1.

With these formulas, we can write the thread function that carries out matrix-vector
multiplication. See Program 4.2. Note that in this code, we’re assuming that A, x, y,
m, and n are all global and shared.

void∗ Pth mat vect(void∗ rank) {
long my rank = (long) rank;
int i, j;
int local m = m/thread count;
int my first row = my rank∗local m;
int my last row = (my rank+1)∗local m − 1;

for (i = my first row; i <= my last row; i++) {
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]∗x[j];
}

return NULL;
} /∗ Pth mat vect ∗/

Program 4.2: Pthreads matrix-vector multiplication



162 CHAPTER 4 Shared-Memory Programming with Pthreads

If you have already read the MPI chapter, you may recall that it took more work
to write a matrix-vector multiplication program using MPI. This was because of the
fact that the data structures were necessarily distributed, that is, each MPI process
only has direct access to its own local memory. Thus, for the MPI code, we need to
explicitly gather all of x into each process’ memory. We see from this example that
there are instances in which writing shared-memory programs is easier than writing
distributed-memory programs. However, we’ll shortly see that there are situations in
which shared-memory programs can be more complex.

4.4 CRITICAL SECTIONS
Matrix-vector multiplication was very easy to code because the shared-memory
locations were accessed in a highly desirable way. After initialization, all of the
variables—except y—are only read by the threads. That is, except for y, none of the
shared variables are changed after they’ve been initialized by the main thread. Fur-
thermore, although the threads do make changes to y, only one thread makes changes
to any individual component, so there are no attempts by two (or more) threads to
modify any single component. What happens if this isn’t the case? That is, what hap-
pens when multiple threads update a single memory location? We also discuss this
in Chapters 2 and 5, so if you’ve read one of these chapters, you already know the
answer. But let’s look at an example.

Let’s try to estimate the value of π . There are lots of different formulas we could
use. One of the simplest is

π = 4

(
1−

1

3
+

1

5
−

1

7
+ ·· ·+ (−1)n

1

2n+ 1
+ ·· ·

)
.

This isn’t the best formula for computing π , because it takes a lot of terms on the
right-hand side before it is very accurate. However, for our purposes, lots of terms
will be better.

The following serial code uses this formula:

double factor = 1.0;
double sum = 0.0;
for (i = 0; i < n; i++, factor = −factor) {

sum += factor/(2∗i+1);
}

pi = 4.0∗sum;

We can try to parallelize this in the same way we parallelized the matrix-vector mul-
tiplication program: divide up the iterations in the for loop among the threads and
make sum a shared variable. To simplify the computations, let’s assume that the num-
ber of threads, thread count or t, evenly divides the number of terms in the sum, n.
Then, if n̄= n/t, thread 0 can add the first n̄ terms. Therefore, for thread 0, the loop
variable i will range from 0 to n̄− 1. Thread 1 will add the next n̄ terms, so for thread
1, the loop variable will range from n̄ to 2n̄− 1. More generally, for thread q the loop
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1 void∗ Thread sum(void∗ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n∗my rank;
7 long long my last i = my first i + my n;
8
9 if (my first i % 2 == 0) /∗ my first i is even ∗/

10 factor = 1.0;
11 else /∗ my first i is odd ∗/
12 factor = −1.0;
13
14 for (i = my first i; i < my last i; i++, factor = −factor) {
15 sum += factor/(2∗i+1);
16 }

17
18 return NULL;
19 } /∗ Thread sum ∗/

Program 4.3: An attempt at a thread function for computing π

variable will range over

qn̄,qn̄+ 1,qn̄+ 2, . . . ,(q+ 1)n̄− 1.

Furthermore, the sign of the first term, term qn̄, will be positive if qn̄ is even and
negative if qn̄ is odd. The thread function might use the code shown in Program 4.3.

If we run the Pthreads program with two threads and n is relatively small,
we find that the results of the Pthreads program are in agreement with the
serial sum program. However, as n gets larger, we start getting some peculiar
results. For example, with a dual-core processor we get the following results:

n

105 106 107 108

π 3.14159 3.141593 3.1415927 3.14159265
1 Thread 3.14158 3.141592 3.1415926 3.14159264
2 Threads 3.14158 3.141480 3.1413692 3.14164686

Notice that as we increase n, the estimate with one thread gets better and better. In
fact, with each factor of 10 increase in n we get another correct digit. With n= 105,
the result as computed by a single thread has five correct digits. With n= 106, it has
six correct digits, and so on. The result computed by two threads agrees with the
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result computed by one thread when n= 105. However, for larger values of n, the
result computed by two threads actually gets worse. In fact, if we ran the program
several times with two threads and the same value of n, we would see that the result
computed by two threads changes from run to run. The answer to our original ques-
tion must clearly be, “Yes, it matters if multiple threads try to update a single shared
variable.”

Let’s recall why this is the case. Remember that the addition of two values
is typically not a single machine instruction. For example, although we can add
the contents of a memory location y to a memory location x with a single C
statement,

x = x + y;

what the machine does is typically more complicated. The current values stored in
x and y will, in general, be stored in the computer’s main memory, which has no
circuitry for carrying out arithmetic operations. Before the addition can be carried
out, the values stored in x and y may therefore have to be transferred from main
memory to registers in the CPU. Once the values are in registers, the addition can
be carried out. After the addition is completed, the result may have to be transferred
from a register back to memory.

Suppose that we have two threads, and each computes a value that is stored in
its private variable y. Also suppose that we want to add these private values together
into a shared variable x that has been initialized to 0 by the main thread. Each thread
will execute the following code:

y = Compute(my rank);
x = x + y;

Let’s also suppose that thread 0 computes y = 1 and thread 1 computes y = 2. The
“correct” result should then be x = 3. Here’s one possible scenario:

Time Thread 0 Thread 1

1 Started by main thread
2 Call Compute() Started by main thread
3 Assign y = 1 Call Compute()
4 Put x=0 and y=1 into registers Assign y = 2
5 Add 0 and 1 Put x=0 and y=2 into registers
6 Store 1 in memory location x Add 0 and 2
7 Store 2 in memory location x

We see that if thread 1 copies x from memory to a register before thread 0 stores its
result, the computation carried out by thread 0 will be overwritten by thread 1. The
problem could be reversed: if thread 1 races ahead of thread 0, then its result may be
overwritten by thread 0. In fact, unless one of the threads stores its result before the
other thread starts reading x from memory, the “winner’s” result will be overwritten
by the “loser.”
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This example illustrates a fundamental problem in shared-memory programming:
when multiple threads attempt to update a shared resource—in our case a shared
variable—the result may be unpredictable. Recall that more generally, when multiple
threads attempt to access a shared resource such as a shared variable or a shared
file, at least one of the accesses is an update, and the accesses can result in an error,
we have a race condition. In our example, in order for our code to produce the
correct result, we need to make sure that once one of the threads starts executing the
statement x = x + y, it finishes executing the statement before the other thread starts
executing the statement. Therefore, the code x = x + y is a critical section, that is,
it’s a block of code that updates a shared resource that can only be updated by one
thread at a time.

4.5 BUSY-WAITING
When, say, thread 0 wants to execute the statement x = x + y, it needs to first make
sure that thread 1 is not already executing the statement. Once thread 0 makes sure of
this, it needs to provide some way for thread 1 to determine that it, thread 0, is execut-
ing the statement, so that thread 1 won’t attempt to start executing the statement until
thread 0 is done. Finally, after thread 0 has completed execution of the statement, it
needs to provide some way for thread 1 to determine that it is done, so that thread 1
can safely start executing the statement.

A simple approach that doesn’t involve any new concepts is the use of a flag
variable. Suppose flag is a shared int that is set to 0 by the main thread. Further,
suppose we add the following code to our example:

1 y = Compute(my rank);
2 while (flag != my rank);
3 x = x + y;
4 flag++;

Let’s suppose that thread 1 finishes the assignment in Line 1 before thread 0. What
happens when it reaches the while statement in Line 2? If you look at the while
statement for a minute, you’ll see that it has the somewhat peculiar property that its
body is empty. So if the test flag != my rank is true, then thread 1 will just execute
the test a second time. In fact, it will keep re-executing the test until the test is false.
When the test is false, thread 1 will go on to execute the code in the critical section
x = x + y.

Since we’re assuming that the main thread has initialized flag to 0, thread 1 won’t
proceed to the critical section in Line 3 until thread 0 executes the statement flag++.
In fact, we see that unless some catastrophe befalls thread 0, it will eventually catch
up to thread 1. However, when thread 0 executes its first test of flag != my rank,
the condition is false, and it will go on to execute the code in the critical section
x = x + y. When it’s done with this, we see that it will execute flag++, and thread
1 can finally enter the critical section.
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The key here is that thread 1 cannot enter the critical section until thread 0
has completed the execution of flag++. And, provided the statements are executed
exactly as they’re written, this means that thread 1 cannot enter the critical section
until thread 0 has completed it.

The while loop is an example of busy-waiting. In busy-waiting, a thread repeat-
edly tests a condition, but, effectively, does no useful work until the condition has the
appropriate value (false in our example).

Note that we said that the busy-wait solution would work “provided the statements
are executed exactly as they’re written.” If compiler optimization is turned on, it
is possible that the compiler will make changes that will affect the correctness of
busy-waiting. The reason for this is that the compiler is unaware that the program is
multithreaded, so it doesn’t “know” that the variables x and flag can be modified by
another thread. For example, if our code

y = Compute(my rank);
while (flag != my rank);
x = x + y;
flag++;

is run by just one thread, the order of the statements while (flag != my rank) and
x = x + y is unimportant. An optimizing compiler might therefore determine that
the program would make better use of registers if the order of the statements were
switched. Of course, this will result in the code

y = Compute(my rank);
x = x + y;
while (flag != my rank);
flag++;

which defeats the purpose of the busy-wait loop. The simplest solution to this
problem is to turn compiler optimizations off when we use busy-waiting. For an
alternative to completely turning off optimizations, see Exercise 4.3.

We can immediately see that busy-waiting is not an ideal solution to the problem
of controlling access to a critical section. Since thread 1 will execute the test over
and over until thread 0 executes flag++, if thread 0 is delayed (for example, if the
operating system preempts it to run something else), thread 1 will simply “spin” on
the test, eating up CPU cycles. This can be positively disastrous for performance.
Turning off compiler optimizations can also seriously degrade performance.

Before going on, though, let’s return to our π calculation program in Figure 4.3
and correct it by using busy-waiting. The critical section in this function is Line 15.
We can therefore precede this with a busy-wait loop. However, when a thread is done
with the critical section, if it simply increments flag, eventually flag will be greater
than t, the number of threads, and none of the threads will be able to return to the
critical section. That is, after executing the critical section once, all the threads will
be stuck forever in the busy-wait loop. Thus, in this instance, we don’t want to simply
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1 void∗ Thread sum(void∗ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n∗my rank;
7 long long my last i = my first i + my n;
8
9 if (my first i % 2 == 0)

10 factor = 1.0;
11 else
12 factor = −1.0;
13
14 for (i = my first i; i < my last i; i++, factor = −factor) {
15 while (flag != my rank);
16 sum += factor/(2∗i+1);
17 flag = (flag+1) % thread count;
18 }

19
20 return NULL;
21 } /∗ Thread sum ∗/

Program 4.4: Pthreads global sum with busy-waiting

increment flag. Rather, the last thread, thread t− 1, should reset flag to zero. This
can be accomplished by replacing flag++ with

flag = (flag + 1) % thread count;

With this change, we get the thread function shown in Program 4.4. If we compile
the program and run it with two threads, we see that it is computing the correct
results. However, if we add in code for computing elapsed time, we see that when
n= 108, the serial sum is consistently faster than the parallel sum. For example, on
the dual-core system, the elapsed time for the sum as computed by two threads is
about 19.5 seconds, while the elapsed time for the serial sum is about 2.8 seconds!

Why is this? Of course, there’s overhead associated with starting up and joining
the threads. However, we can estimate this overhead by writing a Pthreads program
in which the thread function simply returns:

void∗ Thread function(void∗ ignore) {
return NULL;

} /∗ Thread function ∗/

When we find the time that’s elapsed between starting the first thread and joining
the second thread, we see that on this particular system, the overhead is less than
0.3 milliseconds, so the slowdown isn’t due to thread overhead. If we look closely at
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void∗ Thread sum(void∗ rank) {
long my rank = (long) rank;
double factor, my sum = 0.0;
long long i;
long long my n = n/thread count;
long long my first i = my n∗my rank;
long long my last i = my first i + my n;

if (my first i % 2 == 0)
factor = 1.0;

else
factor = −1.0;

for (i = my first i; i < my last i; i++, factor = −factor)
my sum += factor/(2∗i+1);

while (flag != my rank);
sum += my sum;
flag = (flag+1) % thread count;

return NULL;
} /∗ Thread sum ∗/

Program 4.5: Global sum function with critical section after loop

the thread function that uses busy-waiting, we see that the threads alternate between
executing the critical section code in Line 16. Initially flag is 0, so thread 1 must
wait until thread 0 executes the critical section and increments flag. Then, thread 0
must wait until thread 1 executes and increments. The threads will alternate between
waiting and executing, and evidently the waiting and the incrementing increase the
overall run time by a factor of seven.

As we’ll see, busy-waiting isn’t the only solution to protecting a critical section.
In fact, there are much better solutions. However, since the code in a critical section
can only be executed by one thread at a time, no matter how we limit access to the
critical section, we’ll effectively serialize the code in the critical section. Therefore,
if it’s at all possible, we should minimize the number of times we execute critical
section code. One way to greatly improve the performance of the sum function is to
have each thread use a private variable to store its total contribution to the sum. Then,
each thread can add in its contribution to the global sum once, after the for loop. See
Program 4.5. When we run this on the dual-core system with n= 108, the elapsed
time is reduced to 1.5 seconds for two threads, a substantial improvement.

4.6 MUTEXES
Since a thread that is busy-waiting may continually use the CPU, busy-waiting is gen-
erally not an ideal solution to the problem of limiting access to a critical section. Two
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better solutions are mutexes and semaphores. Mutex is an abbreviation of mutual
exclusion, and a mutex is a special type of variable that, together with a couple of
special functions, can be used to restrict access to a critical section to a single thread
at a time. Thus, a mutex can be used to guarantee that one thread “excludes” all other
threads while it executes the critical section. Hence, the mutex guarantees mutually
exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread mutex t.
A variable of type pthread mutex t needs to be initialized by the system before it’s
used. This can be done with a call to

int pthread mutex init(
pthread mutex t∗ mutex p /∗ out ∗/,
const pthread mutexattr t∗ attr p /∗ in ∗/);

We won’t make use of the second argument, so we’ll just pass in NULL. When a
Pthreads program finishes using a mutex, it should call

int pthread mutex destroy(pthread mutex t∗ mutex p /∗ in/out ∗/);

To gain access to a critical section, a thread calls

int pthread mutex lock(pthread mutex t∗ mutex p /∗ in/out ∗/);

When a thread is finished executing the code in a critical section, it should call

int pthread mutex unlock(pthread mutex t∗ mutex p /∗ in/out ∗/);

The call to pthread mutex lock will cause the thread to wait until no other thread is
in the critical section, and the call to pthread mutex unlock notifies the system that
the calling thread has completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declar-
ing a global mutex variable, having the main thread initialize it, and then, instead
of busy-waiting and incrementing a flag, the threads call pthread mutex lock
before entering the critical section, and they call pthread mutex unlock when
they’re done with the critical section. See Program 4.6. The first thread to call
pthread mutex lock will, effectively, “lock the door” to the critical section. Any
other thread that attempts to execute the critical section code must first also call
pthread mutex lock, and until the first thread calls pthread mutex unlock, all the
threads that have called pthread mutex lock will block in their calls—they’ll just
wait until the first thread is done. After the first thread calls pthread mutex unlock,
the system will choose one of the blocked threads and allow it to execute the code in
the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only
metaphor that’s used in connection with mutexes. Programmers often say that the
thread that has returned from a call to pthread mutex lock has “obtained the
mutex” or “obtained the lock.” When this terminology is used, a thread that calls
pthread mutex unlock “relinquishes” the mutex or lock.
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1 void∗ Thread sum(void∗ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n∗my rank;
7 long long my last i = my first i + my n;
8 double my sum = 0.0;
9

10 if (my first i % 2 == 0)
11 factor = 1.0;
12 else
13 factor = −1.0;
14
15 for (i = my first i; i < my last i; i++, factor = −factor) {
16 my sum += factor/(2∗i+1);
17 }

18 pthread mutex lock(&mutex);
19 sum += my sum;
20 pthread mutex unlock(&mutex);
21
22 return NULL;
23 } /∗ Thread sum ∗/

Program 4.6: Global sum function that uses a mutex

Notice that with mutexes (unlike our busy-waiting solution), the order in which
the threads execute the code in the critical section is more or less random: the first
thread to call pthread mutex lock will be the first to execute the code in the critical
section. Subsequent accesses will be scheduled by the system. Pthreads doesn’t guar-
antee (for example) that the threads will obtain the lock in the order in which they
called Pthread mutex lock. However, in our setting, only finitely many threads will
try to acquire the lock. Eventually each thread will obtain the lock.

If we look at the (unoptimized) performance of the busy-wait π program (with
the critical section after the loop) and the mutex program, we see that for both ver-
sions the ratio of the run-time of the single-threaded program with the multithreaded
program is equal to the number of threads, as long as the number of threads is no
greater than the number of cores. (See Table 4.1.) That is,

Tserial

Tparallel
≈ thread count,

provided thread count is less than or equal to the number of cores. Recall that
Tserial/Tparallel is called the speedup, and when the speedup is equal to the number of
threads, we have achieved more or less “ideal” performance or linear speedup.

If we compare the performance of the version that uses busy-waiting with the
version that uses mutexes, we don’t see much difference in the overall run-time when
the programs are run with fewer threads than cores. This shouldn’t be surprising,
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Table 4.1 Run-Times (in Seconds) of π
Programs Using n= 108 Terms on a System
with Two Four-Core Processors

Threads Busy-Wait Mutex

1 2.90 2.90
2 1.45 1.45
4 0.73 0.73
8 0.38 0.38

16 0.50 0.38
32 0.80 0.40
64 3.56 0.38

as each thread only enters the critical section once; so unless the critical section is
very long, or the Pthreads functions are very slow, we wouldn’t expect the threads to
be delayed very much by waiting to enter the critical section. However, if we start
increasing the number of threads beyond the number of cores, the performance of the
version that uses mutexes remains pretty much unchanged, while the performance of
the busy-wait version degrades.

We see that when we use busy-waiting, performance can degrade if there are
more threads than cores.4 This should make sense. For example, suppose we have
two cores and five threads. Also suppose that thread 0 is in the critical section, thread
1 is in the busy-wait loop, and threads 2, 3, and 4 have been descheduled by the
operating system. After thread 0 completes the critical section and sets flag = 1, it
will be terminated, and thread 1 can enter the critical section so the operating system
can schedule thread 2, thread 3, or thread 4. Suppose it schedules thread 3, which will
spin in the while loop. When thread 1 finishes the critical section and sets flag = 2,
the operating system can schedule thread 2 or thread 4. If it schedules thread 4, then
both thread 3 and thread 4, will be busily spinning in the busy-wait loop until the
operating system deschedules one of them and schedules thread 2. See Table 4.2.

4.7 PRODUCER-CONSUMER SYNCHRONIZATION
AND SEMAPHORES

Although busy-waiting is generally wasteful of CPU resources, it has the property
by which we know, in advance, the order in which the threads will execute the code
in the critical section: thread 0 is first, then thread 1, then thread 2, and so on. With

4These are typical run-times. When using busy-waiting and the number of threads is greater than the
number of cores, the run-times vary considerably.
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Table 4.2 Possible Sequence of Events with Busy-Waiting
and More Threads than Cores

Thread

Time flag 0 1 2 3 4

0 0 crit sect busy-wait susp susp susp
1 1 terminate crit sect susp busy-wait susp
2 2 — terminate susp busy-wait busy-wait
...

...
...

...
...

? 2 — — crit sect susp busy-wait

mutexes, the order in which the threads execute the critical section is left to chance
and the system. Since addition is commutative, this doesn’t matter in our program for
estimating π . However, it’s not difficult to think of situations in which we also want
to control the order in which the threads execute the code in the critical section. For
example, suppose each thread generates an n× n matrix, and we want to multiply the
matrices together in thread-rank order. Since matrix multiplication isn’t commutative,
our mutex solution would have problems:

/∗ n and product matrix are shared and initialized by the main
thread ∗/
/∗ product matrix is initialized to be the identity matrix ∗/
void∗ Thread work(void∗ rank) {

long my rank = (long) rank;
matrix t my mat = Allocate matrix(n);
Generate matrix(my mat);
pthread mutex lock(&mutex);
Multiply matrix(product mat, my mat);
pthread mutex unlock(&mutex);
Free matrix(&my mat);
return NULL;

} /∗ Thread work ∗/

A somewhat more complicated example involves having each thread “send a mes-
sage” to another thread. For example, suppose we have thread count or t threads
and we want thread 0 to send a message to thread 1, thread 1 to send a message to
thread 2, . . . , thread t− 2 to send a message to thread t− 1 and thread t− 1 to send
a message to thread 0. After a thread “receives” a message, it can print the message
and terminate. In order to implement the message transfer, we can allocate a shared
array of char∗. Then each thread can allocate storage for the message it’s sending,
and, after it has initialized the message, set a pointer in the shared array to refer to
it. In order to avoid dereferencing undefined pointers, the main thread can set the
individual entries in the shared array to NULL. See Program 4.7. When we run the
program with more than a couple of threads on a dual-core system, we see that some
of the messages are never received. For example, thread 0, which is started first,
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1 /∗ messages has type char∗∗. It’s allocated in main. ∗/
2 /∗ Each entry is set to NULL in main. ∗/
3 void∗ Send msg(void∗ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 long source = (my rank + thread count − 1) % thread count;
7 char∗ my msg = malloc(MSG MAX∗sizeof(char));
8
9 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);

10 messages[dest] = my msg;
11
12 if (messages[my rank] != NULL)
13 printf("Thread %ld > %s\n", my rank, messages[my rank]);
14 else
15 printf("Thread %ld > No message from %ld\n", my rank,

source);
16
17 return NULL;
18 } /∗ Send msg ∗/

Program 4.7: A first attempt at sending messages using Pthreads

will typically finish before thread t− 1 has copied the message into the messages
array. This isn’t surprising, and we could fix the problem by replacing the if
statement in Line 12 with a busy-wait while statement:

while (messages[my rank] == NULL);
printf("Thread %ld > %s\n", my rank, messages[my rank]);

Of course, this solution would have the same problems that any busy-waiting solution
has, so we’d prefer a different approach.

After executing the assignment in Line 10, we’d like to “notify” the thread with
rank dest that it can proceed to print the message. We’d like to do something
like this:

. . .
messages[dest] = my msg;
Notify thread dest that it can proceed;

Await notification from thread source
printf("Thread %ld > %s\n", my rank, messages[my rank]);
. . .

It’s not at all clear how mutexes can be of help here. We might try calling
pthread mutex unlock to “notify” the thread with rank dest. However, mutexes
are initialized to be unlocked, so we’d need to add a call before initializing
messages[dest] to lock the mutex. This will be a problem since we don’t know
when the threads will reach the calls to pthread mutex lock.
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To make this a little clearer, suppose that the main thread creates and initializes an
array of mutexes, one for each thread. Then, we’re trying to do something like this:

1 . . .
2 pthread mutex lock(mutex[dest]);
3 . . .
4 messages[dest] = my msg;
5 pthread mutex unlock(mutex[dest]);
6 . . .
7 pthread mutex lock(mutex[my rank]);
8 printf("Thread %ld > %s\n", my rank, messages[my rank]);
9 . . .

Now suppose we have two threads, and thread 0 gets so far ahead of thread 1 that it
reaches the second call to pthread mutex lock in Line 7 before thread 1 reaches
the first in Line 2. Then, of course, it will acquire the lock and continue to the
printf statement. This will result in thread 0’s dereferencing a null pointer, and it
will crash.

There are other approaches to solving this problem with mutexes. See, for exam-
ple, Exercise 4.7. However, POSIX also provides a somewhat different means of
controlling access to critical sections: semaphores. Let’s take a look at them.

Semaphores can be thought of as a special type of unsigned int, so they can
take on the values 0, 1, 2, . . . . In most cases, we’ll only be interested in using them
when they take on the values 0 and 1. A semaphore that only takes on these values is
called a binary semaphore. Very roughly speaking, 0 corresponds to a locked mutex,
and 1 corresponds to an unlocked mutex. To use a binary semaphore as a mutex,
you initialize it to 1—that is, it’s “unlocked.” Before the critical section you want to
protect, you place a call to the function sem wait. A thread that executes sem wait
will block if the semaphore is 0. If the semaphore is nonzero, it will decrement the
semaphore and proceed. After executing the code in the critical section, a thread calls
sem post, which increments the semaphore, and a thread waiting in sem wait can
proceed.

Semaphores were first defined by the computer scientist Edsger Dijkstra in [13].
The name is taken from the mechanical device that railroads use to control which
train can use a track. The device consists of an arm attached by a pivot to a post.
When the arm points down, approaching trains can proceed, and when the arm is per-
pendicular to the post, approaching trains must stop and wait. The track corresponds
to the critical section: when the arm is down corresponds to a semaphore of 1, and
when the arm is up corresponds to a semaphore of 0. The sem wait and sem post
calls correspond to signals sent by the train to the semaphore controller.

For our current purposes, the crucial difference between semaphores and mutexes
is that there is no ownership associated with a semaphore. The main thread can ini-
tialize all of the semaphores to 0—that is, “locked,” and then any thread can execute a
sem post on any of the semaphores, and, similarly, any thread can execute sem wait
on any of the semaphores. Thus, if we use semaphores, our Send msg function can
be written as shown in Program 4.8.
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1 /∗ messages is allocated and initialized to NULL in main ∗/
2 /∗ semaphores is allocated and initialized to 0 (locked) in

main ∗/
3 void∗ Send msg(void∗ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 char∗ my msg = malloc(MSG MAX∗sizeof(char));
7
8 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);
9 messages[dest] = my msg;

10 sem post(&semaphores[dest])
/∗ ‘‘Unlock’’ the semaphore of dest ∗/

11
12 /∗ Wait for our semaphore to be unlocked ∗/
13 sem wait(&semaphores[my rank]);
14 printf("Thread %ld > %s\n", my rank, messages[my rank]);
15
16 return NULL;
17 } /∗ Send msg ∗/

Program 4.8: Using semaphores so that threads can send messages

The syntax of the various semaphore functions is

int sem init(
sem t∗ semaphore p /∗ out ∗/,
int shared /∗ in ∗/,
unsigned initial val /∗ in ∗/);

int sem destroy(sem t∗ semaphore p /∗ in/out ∗/);
int sem post(sem t∗ semaphore p /∗ in/out ∗/);
int sem wait(sem t∗ semaphore p /∗ in/out ∗/);

We won’t make use of the second argument to sem init: the constant 0 can be passed
in. Note that semaphores are not part of Pthreads. Hence, it’s necessary to add the
following preprocessor directive to any program that uses them:5

#include <semaphore.h>

Finally, note that the message-sending problem didn’t involve a critical section.
The problem wasn’t that there was a block of code that could only be executed by
one thread at a time. Rather, thread my rank couldn’t proceed until thread source
had finished creating the message. This type of synchronization, when a thread can’t

5Some systems (e.g., some versions of Mac OS X) don’t support this version of semaphores. They
support something called “named” semaphores. The functions sem wait and sem post can be used
in the same way. However, sem init should be replaced by sem open, and sem destroy should be
replaced by sem close and sem unlink. See the book’s website for an example.
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proceed until another thread has taken some action, is sometimes called producer-
consumer synchronization.

4.8 BARRIERS AND CONDITION VARIABLES
Let’s take a look at another problem in shared-memory programming: synchronizing
the threads by making sure that they all are at the same point in a program. Such a
point of synchronization is called a barrier because no thread can proceed beyond
the barrier until all the threads have reached it.

Barriers have numerous applications. As we discussed in Chapter 2, if we’re tim-
ing some part of a multithreaded program, we’d like for all the threads to start the
timed code at the same instant, and then report the time taken by the last thread to
finish, that is, the “slowest” thread. We’d therefore like to do something like this:

/∗ Shared ∗/
double elapsed time;
. . .
/∗ Private ∗/
double my start, my finish, my elapsed;
. . .
Synchronize threads;
Store current time in my start;
/∗ Execute timed code ∗/
. . .
Store current time in my finish;
my elapsed = my finish − my start;

elapsed = Maximum of my elapsed values;

Using this approach, we’re sure that all of the threads will record my start at
approximately the same time.

Another very important use of barriers is in debugging. As you’ve probably
already seen, it can be very difficult to determine where an error is occuring in a
parallel program. We can, of course, have each thread print a message indicating
which point it’s reached in the program, but it doesn’t take long for the volume of the
output to become overwhelming. Barriers provide an alternative:

point in program we want to reach;
barrier;
if (my rank == 0) {

printf("All threads reached this point\n");
fflush(stdout);

}

Many implementations of Pthreads don’t provide barriers, so if our code is to be
portable, we need to develop our own implementation. There are a number of options;
we’ll look at three. The first two only use constructs that we’ve already studied. The
third uses a new type of Pthreads object: a condition variable.
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4.8.1 Busy-waiting and a mutex
Implementing a barrier using busy-waiting and a mutex is straightforward: we use a
shared counter protected by the mutex. When the counter indicates that every thread
has entered the critical section, threads can leave a busy-wait loop.

/∗ Shared and initialized by the main thread ∗/
int counter; /∗ Initialize to 0 ∗/
int thread count;
pthread mutex t barrier mutex;
. . .

void∗ Thread work(. . .) {
. . .
/∗ Barrier ∗/
pthread mutex lock(&barrier mutex);
counter++;
pthread mutex unlock(&barrier mutex);
while (counter < thread count);
. . .

}

Of course, this implementation will have the same problems that our other busy-
wait codes had: we’ll waste CPU cycles when threads are in the busy-wait loop, and,
if we run the program with more threads than cores, we may find that the performance
of the program seriously degrades.

Another issue is the shared variable counter. What happens if we want to
implement a second barrier and we try to reuse the counter? When the first
barrier is completed, counter will have the value thread count. Unless we
can somehow reset counter, the while condition we used for our first barrier
counter < thread count will be false, and the barrier won’t cause the threads to
block. Furthermore, any attempt to reset counter to zero is almost certainly doomed
to failure. If the last thread to enter the loop tries to reset it, some thread in the busy-
wait may never see the fact that counter == thread count, and that thread may
hang in the busy-wait. If some thread tries to reset the counter after the barrier, some
other thread may enter the second barrier before the counter is reset and its increment
to the counter will be lost. This will have the unfortunate effect of causing all the
threads to hang in the second busy-wait loop. So if we want to use this barrier, we
need one counter variable for each instance of the barrier.

4.8.2 Semaphores
A natural question is whether we can implement a barrier with semaphores, and, if so,
whether we can reduce the number of problems we encountered with busy-waiting.
The answer to the first question is yes:

/∗ Shared variables ∗/
int counter; /∗ Initialize to 0 ∗/
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sem t count sem; /∗ Initialize to 1 ∗/
sem t barrier sem; /∗ Initialize to 0 ∗/
. . .
void∗ Thread work(...) {

. . .
/∗ Barrier ∗/
sem wait(&count sem);
if (counter == thread count−1) {

counter = 0;
sem post(&count sem);
for (j = 0; j < thread count−1; j++)

sem post(&barrier sem);
} else {

counter++;
sem post(&count sem);
sem wait(&barrier sem);

}

. . .
}

As with the busy-wait barrier, we have a counter that we use to determine how
many threads have entered the barrier. We use two semaphores: count sem pro-
tects the counter, and barrier sem is used to block threads that have entered the
barrier. The count sem semaphore is initialized to 1 (that is, “unlocked”), so the
first thread to reach the barrier will be able to proceed past the call to sem wait.
Subsequent threads, however, will block until they can have exclusive access to
the counter. When a thread has exclusive access to the counter, it checks to see if
counter < thread count-1. If it is, the thread increments counter “relinquishes
the lock” (sem post(&count sem)) and blocks in sem wait(&barrier sem).
On the other hand, if counter == thread count-1, the thread is the last to enter
the barrier, so it can reset counter to zero and “unlock” count sem by calling
sem post(&count sem). Now, it wants to notify all the other threads that they can
proceed, so it executes sem post(&barrier sem) for each of the thread count-1
threads that are blocked in sem wait(&barrier sem).

Note that it doesn’t matter if the thread executing the loop of calls to sem post(&
barrier sem) races ahead and executes multiple calls to sem post before a thread
can be unblocked from sem wait(&barrier sem). For recall that a semaphore is an
unsigned int, and the calls to sem post increment it, while the calls to sem wait
decrement it—unless it’s already 0, in which case the calling threads will block
until it’s positive again, and they’ll decrement it when they unblock. Therefore, it
doesn’t matter if the thread executing the loop of calls to sem post(&barrier sem)
gets ahead of the threads blocked in the calls to sem wait(&barrier sem), because
eventually the blocked threads will see that barrier sem is positive, and they’ll
decrement it and proceed.

It should be clear that this implementation of a barrier is superior to the busy-wait
barrier, since the threads don’t need to consume CPU cycles when they’re blocked
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in sem wait. Can we reuse the data structures from the first barrier if we want to
execute a second barrier?

The counter can be reused, since we were careful to reset it before releas-
ing any of the threads from the barrier. Also, count sem can be reused, since it is
reset to 1 before any threads can leave the barrier. This leaves barrier sem. Since
there’s exactly one sem post for each sem wait, it might appear that the value of
barrier sem will be 0 when the threads start executing a second barrier. However,
suppose we have two threads, and thread 0 is blocked in sem wait(&barrier sem)
in the first barrier, while thread 1 is executing the loop of sem post. Also suppose
that the operating system has seen that thread 0 is idle, and descheduled it out. Then
thread 1 can go on to the second barrier. Since counter == 0, it will execute the
else clause. After incrementing counter, it executes sem post(&count sem), and
then executes sem wait(&barrier sem).

However, if thread 0 is still descheduled, it will not have decremented
barrier sem. Thus when thread 1 reaches sem wait(&barrier sem), barrier sem
will still be 1, so it will simply decrement barrier sem and proceed. This will have
the unfortunate consequence that when thread 0 starts executing again, it will still be
blocked in the first sem wait(&barrier sem), and thread 1 will proceed through the
second barrier before thread 0 has entered it. Reusing barrier sem therefore results
in a race condition.

4.8.3 Condition variables
A somewhat better approach to creating a barrier in Pthreads is provided by condition
variables. A condition variable is a data object that allows a thread to suspend exe-
cution until a certain event or condition occurs. When the event or condition occurs
another thread can signal the thread to “wake up.” A condition variable is always
associated with a mutex.

Typically, condition variables are used in constructs similar to this pseudocode:

lock mutex;
if condition has occurred

signal thread(s);
else {

unlock the mutex and block;
/∗ when thread is unblocked, mutex is relocked ∗/

}

unlock mutex;

Condition variables in Pthreads have type pthread cond t. The function

int pthread cond signal(pthread cond t∗ cond var p /∗ in/out ∗/);

will unblock one of the blocked threads, and

int pthread cond broadcast(pthread cond t∗ cond var p /∗ in/out ∗/);
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will unblock all of the blocked threads. The function

int pthread cond wait(
pthread cond t∗ cond var p /∗ in/out ∗/,
pthread mutex t∗ mutex p /∗ in/out ∗/);

will unlock the mutex referred to by mutex p and cause the executing thread
to block until it is unblocked by another thread’s call to pthread cond signal
or pthread cond broadcast. When the thread is unblocked, it reacquires the
mutex. So in effect, pthread cond wait implements the following sequence of
functions:

pthread mutex unlock(&mutex p);
wait on signal(&cond var p);
pthread mutex lock(&mutex p);

The following code implements a barrier with a condition variable:

/∗ Shared ∗/
int counter = 0;
pthread mutex t mutex;
pthread cond t cond var;
. . .
void∗ Thread work(. . .) {

. . .
/∗ Barrier ∗/
pthread mutex lock(&mutex);
counter++;
if (counter == thread count) {

counter = 0;
pthread cond broadcast(&cond var);

} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}

pthread mutex unlock(&mutex);
. . .

}

Note that it is possible that events other than the call to pthread cond broadcast
can cause a suspended thread to unblock (see, for example, Butenhof [6], page 80).
Hence, the call to pthread cond wait is usually placed in a while loop. If the
thread is unblocked by some event other than a call to pthread cond signal or
pthread cond broadcast, then the return value of pthread cond wait will be
nonzero, and the unblocked thread will call pthread cond wait again.

If a single thread is being awakened, it’s also a good idea to check that the
condition has, in fact, been satisfied before proceeding. In our example, if a single
thread were being released from the barrier with a call to pthread cond signal,
then that thread should verify that counter == 0 before proceeding. This can be
dangerous with the broadcast, though. After being awakened, some thread may
race ahead and change the condition, and if each thread is checking the condition,
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a thread that awakened later may find the condition is no longer satisfied and go back
to sleep.

Note that in order for our barrier to function correctly, it’s essential that the call
to pthread cond wait unlock the mutex. If it didn’t unlock the mutex, then only
one thread could enter the barrier; all of the other threads would block in the call to
pthread mutex lock, the first thread to enter the barrier would block in the call to
pthread cond wait, and our program would hang.

Also note that the semantics of mutexes requires that the mutex be relocked before
we return from the call to pthread cond wait. We “obtained” the lock when we
returned from the call to pthread mutex lock. Hence, we should at some point
“relinquish” the lock through a call to pthread mutex unlock.

Like mutexes and semaphores, condition variables should be initialized and
destroyed. In this case, the functions are

int pthread cond init(
pthread cond t∗ cond p /∗ out ∗/,
const pthread condattr t∗ cond attr p /∗ in ∗/);

int pthread cond destroy(pthread cond t∗ cond p /∗ in/out ∗/);

We won’t be using the second argument to pthread cond init (we’ll call it with
second argument NULL).

4.8.4 Pthreads barriers
Before proceeding we should note that the Open Group, the standards group that
is continuing to develop the POSIX standard, does define a barrier interface for
Pthreads. However, as we noted earlier, it is not universally available, so we haven’t
discussed it in the text. See Exercise 4.9 for some of the details of the API.

4.9 READ-WRITE LOCKS
Let’s take a look at the problem of controlling access to a large, shared data struc-
ture, which can be either simply searched or updated by the threads. For the sake of
explicitness, let’s suppose the shared data structure is a sorted linked list of ints, and
the operations of interest are Member, Insert, and Delete.

4.9.1 Linked list functions
The list itself is composed of a collection of list nodes, each of which is a struct with
two members: an int and a pointer to the next node. We can define such a struct with
the definition

struct list node s {
int data;
struct list node s∗ next;

}
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head_p 2 5 8

FIGURE 4.4

A linked list

1 int Member(int value, struct list node s∗ head p) {
2 struct list node s∗ curr p = head p;
3
4 while (curr p != NULL && curr p−>data < value)
5 curr p = curr p−>next;
6
7 if (curr p == NULL | | curr p−>data > value) {
8 return 0;
9 } else {

10 return 1;
11 }

12 } /∗ Member ∗/

Program 4.9: The Member function

A typical list is shown in Figure 4.4. A pointer, head p, with type struct
list node s∗ refers to the first node in the list. The next member of the last node is
NULL (which is indicated by a slash (/ ) in the next member).

The Member function (Program 4.9) uses a pointer to traverse the list until it
either finds the desired value or determines that the desired value cannot be in the
list. Since the list is sorted, the latter condition occurs when the curr p pointer
is NULL or when the data member of the current node is larger than the desired
value.

The Insert function (Program 4.10) begins by searching for the correct position
in which to insert the new node. Since the list is sorted, it must search until it finds a
node whose data member is greater than the value to be inserted. When it finds this
node, it needs to insert the new node in the position preceding the node that’s been
found. Since the list is singly-linked, we can’t “back up” to this position without
traversing the list a second time. There are several approaches to dealing with this:
the approach we use is to define a second pointer pred p, which, in general, refers
to the predecessor of the current node. When we exit the loop that searches for the
position to insert, the next member of the node referred to by pred p can be updated
so that it refers to the new node. See Figure 4.5.

The Delete function (Program 4.11) is similar to the Insert function in that it
also needs to keep track of the predecessor of the current node while it’s searching
for the node to be deleted. The predecessor node’s next member can then be updated
after the search is completed. See Figure 4.6.
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1 int Insert(int value, struct list node s∗∗ head p) {
2 struct list node s∗ curr p = ∗head p;
3 struct list node s∗ pred p = NULL;
4 struct list node s∗ temp p;
5
6 while (curr p != NULL && curr p−>data < value) {
7 pred p = curr p;
8 curr p = curr p−>next;
9 }

10
11 if (curr p == NULL | | curr p−>data > value) {
12 temp p = malloc(sizeof(struct list node s));
13 temp p−>data = value;
14 temp p−>next = curr p;
15 if (pred p == NULL) /∗ New first node ∗/
16 ∗head p = temp p;
17 else
18 pred p−>next = temp p;
19 return 1;
20 } else { /∗ Value already in list ∗/
21 return 0;
22 }

23 } /∗ Insert ∗/

Program 4.10: The Insert function

pred_p

temp_p

curr_p

head_p 2 5 8

7

FIGURE 4.5

Inserting a new node into a list

4.9.2 A multithreaded linked list
Now let’s try to use these functions in a Pthreads program. In order to share access
to the list, we can define head p to be a global variable. This will simplify the
function headers for Member, Insert, and Delete, since we won’t need to pass in
either head p or a pointer to head p, we’ll only need to pass in the value of interest.
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1 int Delete(int value, struct list node s∗∗ head p) {
2 struct list node s∗ curr p = ∗head p;
3 struct list node s∗ pred p = NULL;
4
5 while (curr p != NULL && curr p−>data < value) {
6 pred p = curr p;
7 curr p = curr p−>next;
8 }

9
10 if (curr p != NULL && curr p−>data == value) {
11 if (pred p == NULL) { /∗ Deleting first node in list ∗/
12 ∗head p = curr p−>next;
13 free(curr p);
14 } else {
15 pred p−>next = curr p−>next;
16 free(curr p);
17 }

18 return 1;
19 } else { /∗ Value isn’t in list ∗/
20 return 0;
21 }

22 } /∗ Delete ∗/

Program 4.11: The Delete function

pred_p curr_p

head_p 2 5 8

FIGURE 4.6

Deleting a node from the list

What now are the consequences of having multiple threads simultaneously execute
the three functions?

Since multiple threads can simultaneously read a memory location without con-
flict, it should be clear that multiple threads can simultaneously execute Member. On
the other hand, Delete and Insert also write to memory locations, so there may be
problems if we try to execute either of these operations at the same time as another
operation. As an example, suppose that thread 0 is executing Member (5) at the same
time that thread 1 is executing Delete (5). The current state of the list is shown in
Figure 4.7. An obvious problem is that if thread 0 is executing Member (5), it is going
to report that 5 is in the list, when, in fact, it may be deleted even before thread 0
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Thread 1:
pred_p

Thread 1:
curr_p

Thread 0:
curr_p

head_p 2 5 8

FIGURE 4.7

Simultaneous access by two threads

returns. A second obvious problem is if thread 0 is executing Member (8), thread 1
may free the memory used for the node storing 5 before thread 0 can advance to the
node storing 8. Although typical implementations of free don’t overwrite the freed
memory, if the memory is reallocated before thread 0 advances, there can be serious
problems. For example, if the memory is reallocated for use in something other than
a list node, what thread 0 “thinks” is the next member may be set to utter garbage,
and after it executes

curr p = curr p−>next;

dereferencing curr p may result in a segmentation violation.
More generally, we can run into problems if we try to simultaneously execute

another operation while we’re executing an Insert or a Delete. It’s OK for multi-
ple threads to simultaneously execute Member—that is, read the list nodes—but it’s
unsafe for multiple threads to access the list if at least one of the threads is executing
an Insert or a Delete—that is, is writing to the list nodes (see Exercise 4.11).

How can we deal with this problem? An obvious solution is to simply lock the list
any time that a thread attempts to access it. For example, a call to each of the three
functions can be protected by a mutex, so we might execute

Pthread mutex lock(&list mutex);
Member(value);
Pthread mutex unlock(&list mutex);

instead of simply calling Member(value).
An equally obvious problem with this solution is that we are serializing access to

the list, and if the vast majority of our operations are calls to Member, we’ll fail to
exploit this opportunity for parallelism. On the other hand, if most of our operations
are calls to Insert and Delete, then this may be the best solution, since we’ll need
to serialize access to the list for most of the operations, and this solution will certainly
be easy to implement.
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An alternative to this approach involves “finer-grained” locking. Instead of lock-
ing the entire list, we could try to lock individual nodes. We would add, for example,
a mutex to the list node struct:

struct list node s {
int data;
struct list node s∗ next;
pthread mutex t mutex;

}

Now each time we try to access a node we must first lock the mutex associated
with the node. Note that this will also require that we have a mutex associated
with the head p pointer. So, for example, we might implement Member as shown
in Program 4.12. Admittedly this implementation is much more complex than the
original Member function. It is also much slower, since, in general, each time a node
is accessed, a mutex must be locked and unlocked. At a minimum it will add two
function calls to the node access, but it can also add a substantial delay if a thread has

int Member(int value) {
struct list node s∗ temp p;

pthread mutex lock(&head p mutex);
temp p = head p;
while (temp p != NULL && temp p−>data < value) {

if (temp p−>next != NULL)
pthread mutex lock(&(temp p−>next−>mutex));

if (temp p == head p)
pthread mutex unlock(&head p mutex);

pthread mutex unlock(&(temp p−>mutex));
temp p = temp p−>next;

}

if (temp p == NULL | | temp p−>data > value) {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
if (temp p != NULL)

pthread mutex unlock(&(temp p−>mutex));
return 0;

} else {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
pthread mutex unlock(&(temp p−>mutex));
return 1;

}

} /∗ Member ∗/

Program 4.12: Implementation of Member with one mutex per list node
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to wait for a lock. A further problem is that the addition of a mutex field to each node
will substantially increase the amount of storage needed for the list. On the other
hand, the finer-grained locking might be a closer approximation to what we want.
Since we’re only locking the nodes of current interest, multiple threads can simul-
taneously access different parts of the list, regardless of which operations they’re
executing.

4.9.3 Pthreads read-write locks
Neither of our multithreaded linked lists exploits the potential for simultaneous
access to any node by threads that are executing Member. The first solution only
allows one thread to access the entire list at any instant, and the second only allows
one thread to access any given node at any instant. An alternative is provided by
Pthreads’ read-write locks. A read-write lock is somewhat like a mutex except that
it provides two lock functions. The first lock function locks the read-write lock for
reading, while the second locks it for writing. Multiple threads can thereby simul-
taneously obtain the lock by calling the read-lock function, while only one thread
can obtain the lock by calling the write-lock function. Thus, if any threads own the
lock for reading, any threads that want to obtain the lock for writing will block in
the call to the write-lock function. Furthermore, if any thread owns the lock for writ-
ing, any threads that want to obtain the lock for reading or writing will block in their
respective locking functions.

Using Pthreads read-write locks, we can protect our linked list functions with the
following code (we’re ignoring function return values):

pthread rwlock rdlock(&rwlock);
Member(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Insert(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Delete(value);
pthread rwlock unlock(&rwlock);

The syntax for the new Pthreads functions is

int pthread rwlock rdlock(pthread rwlock t∗ rwlock p /∗ in/out ∗/);
int pthread rwlock wrlock(pthread rwlock t∗ rwlock p /∗ in/out ∗/);
int pthread rwlock unlock(pthread rwlock t∗ rwlock p /∗ in/out ∗/);

As their names suggest, the first function locks the read-write lock for reading, the
second locks it for writing, and the last unlocks it.
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As with mutexes, read-write locks should be initialized before use and destroyed
after use. The following function can be used for initialization:

int pthread rwlock init(
pthread rwlock t∗ rwlock p /∗ out ∗/,
const pthread rwlockattr t∗ attr p /∗ in ∗/);

Also as with mutexes, we’ll not use the second argument, so we’ll just pass NULL.
The following function can be used for destruction of a read-write lock:

int pthread rwlock destroy(pthread rwlock t∗ rwlock p /∗ in/out ∗/);

4.9.4 Performance of the various implementations
Of course, we really want to know which of the three implementations is “best,” so
we included our implementations in a small program in which the main thread first
inserts a user-specified number of randomly generated keys into an empty list. After
being started by the main thread, each thread carries out a user-specified number of
operations on the list. The user also specifies the percentages of each type of oper-
ation (Member, Insert, Delete). However, which operation occurs when and on
which key is determined by a random number generator. Thus, for example, the user
might specify that 1000 keys should be inserted into an initially empty list and a
total of 100,000 operations are to be carried out by the threads. Further, she might
specify that 80% of the operations should be Member, 15% should be Insert, and
the remaining 5% should be Delete. However, since the operations are randomly
generated, it might happen that the threads execute a total of, say, 79,000 calls to
Member, 15,500 calls to Insert, and 5500 calls to Delete.

Tables 4.3 and 4.4 show the times (in seconds) that it took for 100,000 operations
on a list that was initialized to contain 1000 keys. Both sets of data were taken on a
system containing four dual-core processors.

Table 4.3 shows the times when 99.9% of the operations are Member and the
remaining 0.1% are divided equally between Insert and Delete. Table 4.4 shows
the times when 80% of the operations are Member, 10% are Insert, and 10% are
Delete. Note that in both tables when one thread is used, the run-times for the

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops,
99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 0.123 0.098 0.115
One Mutex for Entire List 0.211 0.450 0.385 0.457
One Mutex per Node 1.680 5.700 3.450 2.700
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Table 4.4 Linked List Times: 1000 Initial Keys, 100,000 ops,
80% Member, 10% Insert, 10% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 2.48 4.97 4.69 4.71
One Mutex for Entire List 2.50 5.13 5.04 5.11
One Mutex per Node 12.00 29.60 17.00 12.00

read-write locks and the single-mutex implementations are about the same. This
makes sense: the operations are serialized, and since there is no contention for the
read-write lock or the mutex, the overhead associated with both implementations
should consist of a function call before the list operation and a function call after the
operation. On the other hand, the implementation that uses one mutex per node is
much slower. This also makes sense, since each time a single node is accessed there
will be two function calls—one to lock the node mutex and one to unlock it. Thus,
there’s considerably more overhead for this implementation.

The inferiority of the implementation that uses one mutex per node persists when
we use multiple threads. There is far too much overhead associated with all the
locking and unlocking to make this implementation competitive with the other two
implementations.

Perhaps the most striking difference between the two tables is the relative perfor-
mance of the read-write lock implementation and the single-mutex implementation
when multiple threads are used. When there are very few Inserts and Deletes, the
read-write lock implementation is far better than the single-mutex implementation.
Since the single-mutex implementation will serialize all the operations, this suggests
that if there are very few Inserts and Deletes, the read-write locks do a very good
job of allowing concurrent access to the list. On the other hand, if there are a relatively
large number of Inserts and Deletes (for example, 10% each), there’s very little
difference between the performance of the read-write lock implementation and the
single-mutex implementation. Thus, for linked list operations, read-write locks can
provide a considerable increase in performance, but only if the number of Inserts
and Deletes is quite small.

Also notice that if we use one mutex or one mutex per node, the program
is always as fast or faster when it’s run with one thread. Furthermore, when the
number of inserts and deletes is relatively large, the read-write lock program
is also faster with one thread. This isn’t surprising for the one mutex implemen-
tation, since effectively accesses to the list are serialized. For the read-write lock
implementation, it appears that when there are a substantial number of write-locks,
there is too much contention for the locks and overall performance deteriorates
significantly.
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In summary, the read-write lock implementation is superior to the one mutex and
the one mutex per node implementations. However, unless the number of inserts
and deletes is small, a serial implementation will be superior.

4.9.5 Implementing read-write locks
The original Pthreads specification didn’t include read-write locks, so some of the
early texts describing Pthreads include implementations of read-write locks (see, for
example, [6]). A typical implementation6 defines a data structure that uses two condi-
tion variables—one for “readers” and one for “writers”—and a mutex. The structure
also contains members that indicate

1. how many readers own the lock, that is, are currently reading,
2. how many readers are waiting to obtain the lock,
3. whether a writer owns the lock, and
4. how many writers are waiting to obtain the lock.

The mutex protects the read-write lock data structure: whenever a thread calls one
of the functions (read-lock, write-lock, unlock), it first locks the mutex, and whenever
a thread completes one of these calls, it unlocks the mutex. After acquiring the mutex,
the thread checks the appropriate data members to determine how to proceed. As an
example, if it wants read-access, it can check to see if there’s a writer that currently
owns the lock. If not, it increments the number of active readers and proceeds. If a
writer is active, it increments the number of readers waiting and starts a condition
wait on the reader condition variable. When it’s awakened, it decrements the number
of readers waiting, increments the number of active readers, and proceeds. The write-
lock function has an implementation that’s similar to the read-lock function.

The action taken in the unlock function depends on whether the thread was a
reader or a writer. If the thread was a reader, there are no currently active readers,
and there’s a writer waiting, then it can signal a writer to proceed before returning.
If, on the other hand, the thread was a writer, there can be both readers and writers
waiting, so the thread needs to decide whether it will give preference to readers or
writers. Since writers must have exclusive access, it is likely that it is much more
difficult for a writer to obtain the lock. Many implementations therefore give writers
preference. Programming Assignment 4.6 explores this further.

4.10 CACHES, CACHE COHERENCE, AND FALSE SHARING7

Recall that for a number of years now, processors have been able to execute oper-
ations much faster than they can access data in main memory. If a processor must

6This discussion follows the basic outline of Butenhof’s implementation [6].
7This material is also covered in Chapter 5, so if you’ve already read that chapter, you may want to
skim this section.
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read data from main memory for each operation, it will spend most of its time simply
waiting for the data from memory to arrive. Also recall that in order to address this
problem, chip designers have added blocks of relatively fast memory to processors.
This faster memory is called cache memory.

The design of cache memory takes into consideration the principles of temporal
and spatial locality: if a processor accesses main memory location x at time t, then it
is likely that at times close to t it will access main memory locations close to x. Thus,
if a processor needs to access main memory location x, rather than transferring only
the contents of x to/from main memory, a block of memory containing x is tranferred
from/to the processor’s cache. Such a block of memory is called a cache line or cache
block.

In Section 2.3.4, we saw that the use of cache memory can have a huge impact
on shared-memory. Let’s recall why. First, consider the following situation: Sup-
pose x is a shared variable with the value five, and both thread 0 and thread 1
read x from memory into their (separate) caches, because both want to execute the
statement

my y = x;

Here, my y is a private variable defined by both threads. Now suppose thread 0
executes the statement

x++;

Finally, suppose that thread 1 now executes

my z = x;

where my z is another private variable.
What’s the value in my z? Is it five? Or is it six? The problem is that there are (at

least) three copies of x: the one in main memory, the one in thread 0’s cache, and the
one in thread 1’s cache. When thread 0 executed x++, what happened to the values
in main memory and thread 1’s cache? This is the cache coherence problem, which
we discussed in Chapter 2. We saw there that most systems insist that the caches
be made aware that changes have been made to data they are caching. The line in
the cache of thread 1 would have been marked invalid when thread 0 executed x++,
and before assigning my z = x, the core running thread 1 would see that its value of
x was out of date. Thus, the core running thread 0 would have to update the copy
of x in main memory (either now or earlier), and the core running thread 1 would
get the line with the updated value of x from main memory. For further details, see
Chapter 2.

The use of cache coherence can have a dramatic effect on the performance of
shared-memory systems. To illustrate this, recall our Pthreads matrix-vector multipli-
cation example: The main thread initialized an m× n matrix A and an n-dimensional
vector x. Each thread was responsible for computing m/t components of the product
vector y= Ax. (As usual, t is the number of threads.) The data structures representing
A, x, y, m, and n were all shared. For ease of reference, we reproduce the code in
Program 4.13.
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If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads:

E =
S

t
=

(
Tserial

Tparallel

)
t

=
Tserial

t×Tparallel
.

Since S ≤ t, E ≤ 1. Table 4.5 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000, so an analysis that only considers arithmetic operations would predict
that a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. With one thread, the 8,000,000× 8
system requires about 14% more time than the 8000× 8000 system, and the 8×
8,000,000 system requires about 28% more time than the 8000× 8000 system. Both
of these differences are at least partially attributable to cache performance.

1 void ∗Pth mat vect(void∗ rank) {
2 long my rank = (long) rank;
3 int i, j;
4 int local m = m/thread count;
5 int my first row = my rank∗local m;
6 int my last row = (my rank+1)∗local m − 1;
7
8 for (i = my first row; i <= my last row; i++) {
9 y[i] = 0.0;

10 for (j = 0; j < n; j++)
11 y[i] += A[i][j]∗x[j];
12 }

13
14 return NULL;
15 } /∗ Pth mat vect ∗/

Program 4.13: Pthreads matrix-vector multiplication

Table 4.5 Run-Times and Efficiencies of Matrix-Vector
Multiplication (times are in seconds)

Matrix Dimension

8,000,000× 8 8000× 8000 8× 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.393 1.000 0.345 1.000 0.441 1.000
2 0.217 0.906 0.188 0.918 0.300 0.735
4 0.139 0.707 0.115 0.750 0.388 0.290
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Recall that a write-miss occurs when a core tries to update a variable that’s not in
the cache, and it has to access main memory. A cache profiler (such as Valgrind [49])
shows that when the program is run with the 8,000,000× 8 input, it has far more
cache write-misses than either of the other inputs. The bulk of these occur in Line 9.
Since the number of elements in the vector y is far greater in this case (8,000,000
vs. 8000 or 8), and each element must be initialized, it’s not surprising that this line
slows down the execution of the program with the 8,000,000× 8 input.

Also recall that a read-miss occurs when a core tries to read a variable that’s not
in the cache, and it has to access main memory. A cache profiler shows that when the
program is run with the 8× 8,000,000 input, it has far more cache read-misses than
either of the other inputs. These occur in Line 11, and a careful study of this program
(see Exercise 4.15) shows that the main source of the differences is due to the reads
of x. Once again, this isn’t surprising, since for this input, x has 8,000,000 elements,
versus only 8000 or 8 for the other inputs.

It should be noted that there may be other factors that are affecting the relative
performance of the single-threaded program with the differing inputs. For example,
we haven’t taken into consideration whether virtual memory (see Section 2.2.4) has
affected the performance of the program with the different inputs. How frequently
does the CPU need to access the page table in main memory?

Of more interest to us, though, is the tremendous difference in efficiency as
the number of threads is increased. The two-thread efficiency of the program
with the 8× 8,000,000 input is nearly 20% less than the efficiency of the program
with the 8,000,000× 8 and the 8000× 8000 inputs. The four-thread efficiency of
the program with the 8× 8,000,000 input is nearly 60% less than the program’s
efficiency with the 8,000,000× 8 input and more than 60% less than the program’s
efficiency with the 8000× 8000 input. These dramatic decreases in efficiency are
even more remarkable when we note that with one thread the program is much
slower with 8× 8,000,000 input. Therefore, the numerator in the formula for the
efficiency:

Parallel Efficiency =
Serial Run-Time

(Number of Threads)× (Parallel Run-Time)

will be much larger. Why, then, is the multithreaded performance of the program so
much worse with the 8× 8,000,000 input?

In this case, once again, the answer has to do with cache. Let’s take a look at
the program when we run it with four threads. With the 8,000,000× 8 input, y has
8,000,000 components, so each thread is assigned 2,000,000 components. With the
8000× 8000 input, each thread is assigned 2000 components of y, and with the 8×
8,000,000 input, each thread is assigned 2 components. On the system we used, a
cache line is 64 bytes. Since the type of y is double, and a double is 8 bytes, a single
cache line can store 8 doubles.

Cache coherence is enforced at the “cache-line level.” That is, each time any value
in a cache line is written, if the line is also stored in another processor’s cache, the
entire line will be invalidated—not just the value that was written. The system we’re
using has two dual-core processors and each processor has its own cache. Suppose
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for the moment that threads 0 and 1 are assigned to one of the processors and threads
2 and 3 are assigned to the other. Also suppose that for the 8× 8,000,000 problem
all of y is stored in a single cache line. Then every write to some element of y will
invalidate the line in the other processor’s cache. For example, each time thread 0
updates y[0] in the statement

y[i] += A[i][j]∗x[j];

If thread 2 or 3 is executing this code, it will have to reload y. Each thread will
update each of its components 8,000,000 times. We see that with this assignment
of threads to processors and components of y to cache lines, all the threads will
have to reload y many times. This is going to happen in spite of the fact that
only one thread accesses any one component of y—for example, only thread 0
accesses y[0].

Each thread will update its assigned components of y a total of 16,000,000 times.
It appears that many, if not most, of these updates are forcing the threads to access
main memory. This is called false sharing. Suppose two threads with separate caches
access different variables that belong to the same cache line. Further suppose at least
one of the threads updates its variable. Then even though neither thread has written
to a variable that the other thread is using, the cache controller invalidates the entire
cache line and forces the threads to get the values of the variables from main memory.
The threads aren’t sharing anything (except a cache line), but the behavior of the
threads with respect to memory access is the same as if they were sharing a variable,
hence the name false sharing.

Why is false sharing not a problem with the other inputs? Let’s look at what
happens with the 8000× 8000 input. Suppose thread 2 is assigned to one of the pro-
cessors and thread 3 is assigned to another. (We don’t actually know which threads
are assigned to which processors, but it turns out—see Exercise 4.16—that it doesn’t
matter.) Thread 2 is responsiblefor computing

y[4000], y[4001], . . . , y[5999],

and thread 3 is responsible for computing

y[6000], y[6001], . . . , y[7999].

If a cache line contains 8 consecutive doubles, the only possibility for false sharing
is on the interface between their assigned elements. If, for example, a single cache
line contains

y[5996], y[5997], y[5998], y[5999], y[6000], y[6001], y[6002], y[6003],

then it’s conceivable that there might be false sharing of this cache line. However,
thread 2 will access

y[5996], y[5997], y[5998], y[5999]

at the end of its for i loop, while thread 3 will access

y[6000], y[6001], y[6002], y[6003]
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at the beginning of its for i loop. So it’s very likely that when thread 2 accesses
(say) y[5996], thread 3 will be long done with all four of

y[6000], y[6001], y[6002], y[6003].

Similarly, when thread 3 accesses, say, y[6003], it’s very likely that thread 2 won’t
be anywhere near starting to access

y[5996], y[5997], y[5998], y[5999].

It’s therefore unlikely that false sharing of the elements of y will be a significant
problem with the 8000× 8000 input. Similar reasoning suggests that false sharing of
y is unlikely to be a problem with the 8,000,000× 8 input. Also note that we don’t
need to worry about false sharing of A or x, since their values are never updated by
the matrix-vector multiplication code.

This brings up the question of how we might avoid false sharing in our matrix-
vector multiplication program. One possible solution is to “pad” the y vector with
dummy elements in order to insure that any update by one thread won’t affect another
thread’s cache line. Another alternative is to have each thread use its own private stor-
age during the multiplication loop, and then update the shared storage when they’re
done. See Exercise 4.18.

4.11 THREAD-SAFETY8

Let’s look at another potential problem that occurs in shared-memory programming:
thread-safety. A block of code is thread-safe if it can be simultaneously executed by
multiple threads without causing problems.

As an example, suppose we want to use multiple threads to “tokenize” a file.
Let’s suppose that the file consists of ordinary English text, and that the tokens are
just contiguous sequences of characters separated from the rest of the text by white
space—a space, a tab, or a newline. A simple approach to this problem is to divide
the input file into lines of text and assign the lines to the threads in a round-robin
fashion: the first line goes to thread 0, the second goes to thread 1, . . . , the tth goes to
thread t, the t+ 1st goes to thread 0, and so on.

We can serialize access to the lines of input using semaphores. Then, after a thread
has read a single line of input, it can tokenize the line. One way to do this is to use
the strtok function in string.h, which has the following prototype:

char∗ strtok(
char∗ string /∗ in/out ∗/,
const char∗ separators /∗ in ∗/);

Its usage is a little unusual: the first time it’s called the string argument should be the
text to be tokenized, so in our example it should be the line of input. For subsequent

8This material is also covered in Chapter 5, so if you’ve already read that chapter, you may want to
skim this section.
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calls, the first argument should be NULL. The idea is that in the first call, strtok
caches a pointer to string, and for subsequent calls it returns successive tokens
taken from the cached copy. The characters that delimit tokens should be passed
in separators. We should pass in the string " \t\n" as the separators
argument.

Given these assumptions, we can write the thread function shown in Pro-
gram 4.14. The main thread has initialized an array of t semaphores—one for
each thread. Thread 0’s semaphore is initialized to 1. All the other semaphores are
initialized to 0. So the code in Lines 9 to 11 will force the threads to sequentially
access the lines of input. Thread 0 will immediately read the first line, but all the
other threads will block in sem wait. When thread 0 executes the sem post, thread
1 can read a line of input. After each thread has read its first line of input (or end-
of-file), any additional input is read in Lines 24 to 26. The fgets function reads a
single line of input and Lines 15 to 22 identify the tokens in the line. When we run the

1 void∗ Tokenize(void∗ rank) {
2 long my rank = (long) rank;
3 int count;
4 int next = (my rank + 1) % thread count;
5 char ∗fg rv;
6 char my line[MAX];
7 char ∗my string;
8
9 sem wait(&sems[my rank]);

10 fg rv = fgets(my line, MAX, stdin);
11 sem post(&sems[next]);
12 while (fg rv != NULL) {
13 printf("Thread %ld > my line = %s", my rank, my line);
14
15 count = 0;
16 my string = strtok(my line, " \t\n");
17 while ( my string != NULL ) {
18 count++;
19 printf("Thread %ld > string %d = %s\n", my rank, count,
20 my string);
21 my string = strtok(NULL, " \t\n");
22 }

23
24 sem wait(&sems[my rank]);
25 fg rv = fgets(my line, MAX, stdin);
26 sem post(&sems[next]);
27 }

28
29 return NULL;
30 } /∗ Tokenize ∗/

Program 4.14: A first attempt at a multithreaded tokenizer
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program with a single thread, it correctly tokenizes the input stream. The first time
we run it with two threads and the input

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

the output is also correct. However, the second time we run it with this input, we get
the following output.

Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = hot.
Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = in
Thread 0 > string 4 = the
Thread 0 > string 5 = pot
Thread 1 > string 1 = Pease
Thread 1 > my line = Nine days old.
Thread 1 > string 1 = Nine
Thread 1 > string 2 = days
Thread 1 > string 3 = old.

What happened? Recall that strtok caches the input line. It does this by declaring a
variable to have static storage class. This causes the value stored in this variable to
persist from one call to the next. Unfortunately for us, this cached string is shared, not
private. Thus, thread 0’s call to strtok with the third line of the input has apparently
overwritten the contents of thread 1’s call with the second line.

The strtok function is not thread-safe: if multiple threads call it simultaneously,
the output it produces may not be correct. Regrettably, it’s not uncommon for C
library functions to fail to be thread-safe. For example, neither the random num-
ber generator random in stdlib.h nor the time conversion function localtime in
time.h is thread-safe. In some cases, the C standard specifies an alternate, thread-safe
version of a function. In fact, there is a thread-safe version of strtok:

char∗ strtok r(
char∗ string /∗ in/out ∗/,
const char∗ separators /∗ in ∗/,
char∗∗ saveptr p /∗ in/out ∗/);

The “ r” is supposed to suggest that the function is reentrant, which is sometimes
used as a synonym for thread-safe. The first two arguments have the same purpose as
the arguments to strtok. The saveptr Append ‘‘ p’’ to ‘‘saveptr’’ argument
is used by strtok r for keeping track of where the function is in the input string;
it serves the purpose of the cached pointer in strtok. We can correct our original
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Tokenize function by replacing the calls to strtok with calls to strtok r. We sim-
ply need to declare a char∗ variable to pass in for the third argument, and replace the
calls in Line 16 and Line 21 with the calls

my string = strtok r(my line, " \t\n", &saveptr);
. . .
my string = strtok r(NULL, " \t\n", &saveptr);

respectively.

4.11.1 Incorrect programs can produce correct output
Notice that our original version of the tokenizer program shows an especially insid-
ious form of program error: the first time we ran it with two threads, the program
produced correct output. It wasn’t until a later run that we saw an error. This, unfor-
tunately, is not a rare occurrence in parallel programs. It’s especially common in
shared-memory programs. Since, for the most part, the threads are running indepen-
dently of each other, as we noted earlier, the exact sequence of statements executed
is nondeterministic. For example, we can’t say when thread 1 will first call strtok.
If its first call takes place after thread 0 has tokenized its first line, then the tokens
identified for the first line should be correct. However, if thread 1 calls strtok before
thread 0 has finished tokenizing its first line, it’s entirely possible that thread 0 may
not identify all the tokens in the first line. Therefore, it’s especially important in
developing shared-memory programs to resist the temptation to assume that since a
program produces correct output, it must be correct. We always need to be wary of
race conditions.

4.12 SUMMARY
Like MPI, Pthreads is a library of functions that programmers can use to imple-
ment parallel programs. Unlike MPI, Pthreads is used to implement shared-memory
parallelism.

A thread in shared-memory programming is analogous to a process that is in
distributed-memory programming. However, a thread is often lighter-weight than a
full-fledged process.

We saw that in Pthreads programs, all the threads have access to global vari-
ables, while local variables usually are private to the thread running the function.
In order to use Pthreads, we should include the pthread.h header file, and, when
we compile our program, it may be necessary to link our program with the Pthread
library by adding −lpthread to the command line. We saw that we can use the
functions pthread create and pthread join, respectively, to start and stop a thread
function.

When multiple threads are executing, the order in which the statements are exe-
cuted by the different threads is usually nondeterministic. When nondeterminism
results from multiple threads attempting to access a shared resource such as a shared
variable or a shared file, at least one of the accesses is an update, and the accesses
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can result in an error, we have a race condition. One of our most important tasks
in writing shared-memory programs is identifying and correcting race conditions. A
critical section is a block of code that updates a shared resource that can only be
updated by one thread at a time, so the execution of code in a critical section should,
effectively, be executed as serial code. Thus, we should try to design our programs
so that they use them as infrequently as possible, and the critical sections we do use
should be as short as possible.

We looked at three basic approaches to avoiding conflicting access to critical
sections: busy-waiting, mutexes, and semaphores. Busy-waiting can be done with
a flag variable and a while loop with an empty body. It can be very wasteful of CPU
cycles. It can also be unreliable if compiler optimization is turned on, so mutexes and
semaphores are generally preferable.

A mutex can be thought of as a lock on a critical section, since mutexes arrange
for mutually exclusive access to a critical section. In Pthreads, a thread attempts to
obtain a mutex with a call to pthread mutex lock, and it relinquishes the mutex
with a call to pthread mutex unlock. When a thread attempts to obtain a mutex
that is already in use, it blocks in the call to pthread mutex lock. This means
that it remains idle in the call to pthread mutex lock until the system gives it the
lock. A semaphore is an unsigned int together with two operations: sem wait and
sem post. If the semaphore is positive, a call to sem wait simply decrements the
semaphore, but if the semaphore is zero, the calling thread blocks until the semaphore
is positive, at which point the semaphore is decremented and the thread returns from
the call. The sem post operation increments the semaphore, so a semaphore can be
used as a mutex with sem wait corresponding to pthread mutex lock and sem post
corresponding to pthread mutex unlock. However, semaphores are more powerful
than mutexes since they can be initialized to any nonnegative value. Furthermore,
since there is no “ownership” of a semaphore, any thread can “unlock” a locked
semaphore. We saw that semaphores can be easily used to implement producer-
consumer synchronization. In producer-consumer synchronization, a “consumer”
thread waits for some condition or data created by a “producer” thread before pro-
ceeding. Semaphores are not part of Pthreads. In order to use them, we need to include
the semaphore.h header file.

A barrier is a point in a program at which the threads block until all of the threads
have reached it. We saw several different means for constructing barriers. One of
them used a condition variable. A condition variable is a special Pthreads object
that can be used to suspend execution of a thread until a condition has occurred.
When the condition has occurred, another thread can awaken the suspended thread
with a condition signal or a condition broadcast.

The last Pthreads construct we looked at was a read-write lock. A read-write lock
is used when it’s safe for multiple threads to simultaneously read a data structure, but
if a thread needs to modify or write to the data structure, then only that thread can
access the data structure during the modification.

We recalled that modern microprocessor architectures use caches to reduce mem-
ory access times, so typical architectures have special hardware to insure that the
caches on the different chips are coherent. Since the unit of cache coherence, a cache
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line or cache block, is usually larger than a single word of memory, this can have the
unfortunate side effect that two threads may be accessing different memory locations,
but when the two locations belong to the same cache line, the cache-coherence hard-
ware acts as if the threads were accessing the same memory location. Thus, if one
of the threads updates its memory location, and then the other thread tries to read its
memory location, it will have to retrieve the value from main memory. That is, the
hardware is forcing the thread to act as if it were actually sharing the memory loca-
tion. Hence, this is called false sharing, and it can seriously degrade the performance
of a shared-memory program.

Some C functions cache data between calls by declaring variables to be static.
This can cause errors when multiple threads call the function; since static storage
is shared among the threads, one thread can overwrite another thread’s data. Such a
function is not thread-safe, and, unfortunately, there are serval such functions in the
C library. Sometimes, however, there is a thread-safe variant.

When we looked at the program that used the function that wasn’t thread-safe,
we saw a particularly insidious problem: when we ran the program with multiple
threads and a fixed set of input, it sometimes produced correct output, even though the
program was erroneous. This means that even if a program produces correct output
during testing, there’s no guarantee that it is in fact correct–it’s up to us to identify
possible race condtions.

4.13 EXERCISES

4.1. When we discussed matrix-vector multiplication we assumed that both m and
n, the number of rows and the number of columns, respectively, were evenly
divisible by t, the number of threads. How do the formulas for the assignments
change if this is not the case?

4.2. If we decide to physically divide a data structure among the threads, that is,
if we decide to make various members local to individual threads, we need to
consider at least three issues:
a. How are the members of the data structure used by the individual threads?
b. Where and how is the data structure initialized?
c. Where and how is the data structure used after its members are computed?

We briefly looked at the first issue in the matrix-vector multiplication function.
We saw that the entire vector x was used by all of the threads, so it seemed
pretty clear that it should be shared. However, for both the matrix A and the
product vector y, just looking at (a) seemed to suggest that A and y should
have their components distributed among the threads. Let’s take a closer look
at this.

What would we have to do in order to divide A and y among the threads?
Dividing y wouldn’t be difficult–each thread could allocate a block of memory
that could be used for storing its assigned components. Presumably, we could
do the same for A–each thread could allocate a block of memory for storing
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its assigned rows. Modify the matrix-vector multiplication program so that
it distributes both of these data structures. Can you “schedule” the input and
output so that the threads can read in A and print out y? How does distributing
A and y affect the run-time of the matrix-vector multiplication? (Don’t include
input or output in your run-time.)

4.3. Recall that the compiler is unaware that an ordinary C program is multi-
threaded, and as a consequence, it may make optimizations that can inter-
fere with busy-waiting. (Note that compiler optimizations should not affect
mutexes, condition variables, or semaphores.) An alternative to completely
turning off compiler optimizations is to identify some shared variables with
the C keyword volatile. This tells the compiler that these variables may be
updated by mutiple threads and, as a consequence, it shouldn’t apply opti-
mizations to statements involving them. As an example, recall our busy-wait
solution to the race condition when multiple threads attempt to add a private
variable into a shared variable:

/∗ x and flag are shared, y is private ∗/
/∗ x and flag are initialized to 0 by main thread ∗/

y = Compute(my rank);
while (flag != my rank);
x = x + y;
flag++;

It’s impossible to tell by looking at this code that the order of the while
statement and the x = x + y statement is important; if this code were single-
threaded, the order of these two statements wouldn’t affect the outcome of the
code. But if the compiler determined that it could improve register usage by
interchanging the order of these two statements, the resulting code would be
erroneous.

If, instead of defining

int flag;
int x;

we define

int volatile flag;
int volatile x;

then the compiler will know that both x and flag can be updated by other
threads, so it shouldn’t try reordering the statements.

With the gcc compiler, the default behavior is no optimization. You can
make certain of this by adding the option −O0 to the command line. Try
running the π calculation program that uses busy-waiting (pth pi busy.c)
without optimization. How does the result of the multithreaded calculation
compare to the single-threaded calculation? Now try running it with optimiza-
tion; if you’re using gcc, replace the −O0 option with −O2. If you found an
error, how many threads did you use?
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Which variables should be made volatile in the π calculation? Change
these variables so that they’re volatile and rerun the program with and without
optimization. How do the results compare to the single-threaded program?

4.4. The performance of the π calculation program that uses mutexes remains
roughly constant once we increase the number of threads beyond the num-
ber of available CPUs. What does this suggest about how the threads are
scheduled on the available processors?

4.5. Modify the mutex version of the π calculation program so that the critical
section is in the for loop. How does the performance of this version compare
to the performance of the original busy-wait version? How might we explain
this?

4.6. Modify the mutex version of the π calculation program so that it uses a
semaphore instead of a mutex. How does the performance of this version
compare with the mutex version?

4.7. Although producer-consumer synchronization is easy to implement with
semaphores, it’s also possible to implement it with mutexes. The basic idea is
to have the producer and the consumer share a mutex. A flag variable that’s
initialized to false by the main thread indicates whether there’s anything to
consume. With two threads we’d execute something like this:

while (1) {
pthread mutex lock(&mutex);
if (my rank == consumer) {

if (message available) {
print message;
pthread mutex unlock(&mutex);
break;

}

} else { /∗ my rank == producer ∗/
create message;
message available = 1;
pthread mutex unlock(&mutex);
break;

}

pthread mutex unlock(&mutex);
}

So if the consumer gets into the loop first, it will see there’s no message
available and return to the call to pthread mutex lock. It will continue
this process until the producer creates the message. Write a Pthreads pro-
gram that implements this version of producer-consumer synchronization
with two threads. Can you generalize this so that it works with 2k threads–
odd-ranked threads are consumers and even-ranked threads are producers?
Can you generalize this so that each thread is both a producer and a con-
sumer? For example, suppose that thread q “sends” a message to thread
(q+ 1) mod t and “receives” a message from thread (q− 1+ t) mod t? Does
this use busy-waiting?
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4.8. If a program uses more than one mutex, and the mutexes can be acquired
in different orders, the program can deadlock. That is, threads may block
forever waiting to acquire one of the mutexes. As an example, suppose that a
program has two shared data structures–for example, two arrays or two linked
lists–each of which has an associated mutex. Further suppose that each data
structure can be accessed (read or modified) after acquiring the data structure’s
associated mutex.
a. Suppose the program is run with two threads. Further suppose that the

following sequence of events occurs:

Time Thread 0 Thread 1

0 pthread mutex lock(&mut0) pthread mutex lock(&mut1)
1 pthread mutex lock(&mut1) pthread mutex lock(&mut0)

What happens?
b. Would this be a problem if the program used busy-waiting (with two flag

variables) instead of mutexes?
c. Would this be a problem if the program used semaphores instead of

mutexes?

4.9. Some implementations of Pthreads define barriers. The function

int pthread barrier init(
pthread barrier t∗ barrier p /∗ out ∗/,
const pthread barrierattr t∗ attr p /∗ in ∗/,
unsigned count /∗ in ∗/);

initializes a barrier object, barrier p. As usual, we’ll ignore the second argu-
ment and just pass in NULL. The last argument indicates the number of threads
that must reach the barrier before they can continue. The barrier itself is a call
to the function

int pthread barrier wait(
pthread barrier t∗ barrier p /∗ in/out ∗/);

As with most other Pthreads objects, there is a destroy function

int pthread barrier destroy(
pthread barrier t∗ barrier p /∗ in/out ∗/);

Modify one of the barrier programs from the book’s website so that it uses a
Pthreads barrier. Find a system with a Pthreads implementation that includes
barrier and run your program with various numbers of threads. How does its
performance compare to the other implementations?

4.10. Modify one of the programs you wrote in the Programming Assignments that
follow so that it uses the scheme outlined in Section 4.8 to time itself. In order
to get the time that has elapsed since some point in the past, you can use
the macro GET TIME defined in the header file timer.h on the book’s website.
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Note that this will give wall clock time, not CPU time. Also note that since it’s
a macro, it can operate directly on its argument. For example, to implement

Store current time in my start;

you would use

GET TIME(my start);

not

GET TIME(&my start);

How will you implement the barrier? How will you implement the following
pseudo code?

elapsed = Maximum of my elapsed values;

4.11. Give an example of a linked list and a sequence of memory accesses to the
linked list in which the following pairs of operations can potentially result in
problems:
a. Two deletes executed simultaneously
b. An insert and a delete executed simultaneously
c. A member and a delete executed simultaneously
d. Two inserts executed simultaneously
e. An insert and a member executed simultaneously

4.12. The linked list operations Insert and Delete consist of two distinct
“phases.” In the first phase, both operations search the list for either the posi-
tion of the new node or the position of the node to be deleted. If the outcome
of the first phase so indicates, in the second phase a new node is inserted or
an existing node is deleted. In fact, it’s quite common for linked list programs
to split each of these operations into two function calls. For both operations,
the first phase involves only read-access to the list; only the second phase
modifies the list. Would it be safe to lock the list using a read-lock for the
first phase? And then to lock the list using a write-lock for the second phase?
Explain your answer.

4.13. Download the various threaded linked list programs from the website. In
our examples, we ran a fixed percentage of searches and split the remaining
percentage among inserts and deletes.
a. Rerun the experiments with all searches and all inserts.
b. Rerun the experiments with all searches and all deletes.
Is there a difference in the overall run-times? Is insert or delete more
expensive?

4.14. Recall that in C a function that takes a two-dimensional array argument must
specify the number of columns in the argument list. Thus it is quite common
for C programmers to only use one-dimensional arrays, and to write explicit
code for converting pairs of subscripts into a single dimension. Modify the
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Pthreads matrix-vector multiplication so that it uses a one-dimensional array
for the matrix and calls a matrix-vector multiplication function. How does this
change affect the run-time?

4.15. Download the source file pth mat vect rand split.c from the book’s web-
site. Find a program that does cache profiling (for example, Valgrind [49])
and compile the program according to the instructions in the cache pro-
filer documentation. (with Valgrind you will want a symbol table and full
optimization gcc −g −O2 . . .). Now run the program according to the
instructions in the cache profiler documentation, using input k× (k · 106),
(k · 103)× (k · 103), and (k · 106)× k. Choose k so large that the number of
level 2 cache misses is of the order 106 for at least one of the input sets of
data.
a. How many level 1 cache write-misses occur with each of the three inputs?

b. How many level 2 cache write-misses occur with each of the three inputs?

c. Where do most of the write-misses occur? For which input data does the
program have the most write-misses? Can you explain why?

d. How many level 1 cache read-misses occur with each of the three inputs?

e. How many level 2 cache read-misses occur with each of the three inputs?

f. Where do most of the read-misses occur? For which input data does the
program have the most read-misses? Can you explain why?

g. Run the program with each of the three inputs, but without using the cache
profiler. With which input is the program the fastest? With which input is
the program the slowest? Can your observations about cache misses help
explain the differences? How?

4.16. Recall the matrix-vector multiplication example with the 8000× 8000 input.
Suppose that the program is run with four threads, and thread 0 and thread
2 are assigned to different processors. If a cache line contains 64 bytes or
eight doubles, is it possible for false sharing between threads 0 and 2 to
occur for any part of the vector y? Why? What about if thread 0 and thread
3 are assigned to different processors–is it possible for false sharing to occur
between them for any part of y?

4.17. Recall the matrix-vector multiplication example with an 8× 8,000,000
matrix. Suppose that doubles use 8 bytes of memory and that a cache line is 64
bytes. Also suppose that our system consists of two dual-core processors.
a. What is the minimum number of cache lines that are needed to store the

vector y?
b. What is the maximum number of cache lines that are needed to store the

vector y?
c. If the boundaries of cache lines always coincide with the boundaries of

8-byte doubles, in how many different ways can the components of y be
assigned to cache lines?

d. If we only consider which pairs of threads share a processor, in how
many different ways can four threads be assigned to the processors in our



206 CHAPTER 4 Shared-Memory Programming with Pthreads

computer? Here we’re assuming that cores on the same processor share a
cache.

e. Is there an assignment of components to cache lines and threads to proces-
sors that will result in no falses sharing in our example? In other words,
is it possible that the threads assigned to one processor will have their
components of y in one cache line, and the threads assigned to the other
processor will have their components in a different cache line?

f. How many assignments of components to cache lines and threads to
processors are there?

g. Of these assignments, how many will result in no false sharing?

4.18. a. Modify the matrix-vector multiplication program so that it pads the vec-
tor y when there’s a possibility of false sharing. The padding should be
done so that if the threads execute in lock-step, there’s no possibility that
a single cache line containing an element of y will be shared by two or
more threads. Suppose, for example, that a cache line stores eight double
s and we run the program with four threads. If we allocate storage for at
least 48 doubles in y, then, on each pass through the for i loop, there’s no
possibility that two threads will simultaneously access the same cache line.

b. Modify the matrix-vector multiplication so that each thread uses private
storage for its part of y during the for i loop. When a thread is done
computing its part of y, it should copy its private storage into the shared
variable.

c. How does the performance of these two alternatives compare to the
original program? How do they compare to each other?

4.19. Although strtok r is thread-safe, it has the rather unfortunate property that
it gratuitously modifies the input string. Write a tokenizer that is thread-safe
and doesn’t modify the input string.

4.14 PROGRAMMING ASSIGNMENTS

4.1. Write a Pthreads program that implements the histogram program in Chapter 2.
4.2. Suppose we toss darts randomly at a square dartboard, whose bullseye is at the

origin, and whose sides are 2 feet in length. Suppose also that there’s a circle
inscribed in the square dartboard. The radius of the circle is 1 foot, and it’s area
is π square feet. If the points that are hit by the darts are uniformly distributed
(and we always hit the square), then the number of darts that hit inside the circle
should approximately satisfy the equation

number in circle

total number of tosses
=
π

4
,

since the ratio of the area of the circle to the area of the square is π/4.
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We can use this formula to estimate the value of π with a random number
generator:

number in circle = 0;
for (toss = 0; toss < number of tosses; toss++) {

x = random double between −1 and 1;
y = random double between −1 and 1;
distance squared = x∗x + y∗y;
if (distance squared <= 1) number in circle++;

}

pi estimate = 4∗number in circle/((double) number of tosses);

This is called a “Monte Carlo” method, since it uses randomness (the dart
tosses).

Write a Pthreads program that uses a Monte Carlo method to estimate π .
The main thread should read in the total number of tosses and print the estimate.
You may want to use long long ints for the number of hits in the circle and
the number of tosses, since both may have to be very large to get a reasonable
estimate of π .

4.3. Write a Pthreads program that implements the trapezoidal rule. Use a shared
variable for the sum of all the threads’ computations. Use busy-waiting,
mutexes, and semaphores to enforce mutual exclusion in the critical section.
What advantages and disadvantages do you see with each approach?

4.4. Write a Pthreads program that finds the average time required by your system
to create and terminate a thread. Does the number of threads affect the average
time? If so, how?

4.5. Write a Pthreads program that implements a “task queue.” The main thread
begins by starting a user-specified number of threads that immediately go to
sleep in a condition wait. The main thread generates blocks of tasks to be car-
ried out by the other threads; each time it generates a new block of tasks, it
awakens a thread with a condition signal. When a thread finishes executing
its block of tasks, it should return to a condition wait. When the main thread
completes generating tasks, it sets a global variable indicating that there will be
no more tasks, and awakens all the threads with a condition broadcast. For the
sake of explicitness, make your tasks linked list operations.

4.6. Write a Pthreads program that uses two condition variables and a mutex to
implement a read-write lock. Download the online linked list program that
uses Pthreads read-write locks, and modify it to use your read-write locks.
Now compare the performance of the program when readers are given pref-
erence with the program when writers are given preference. Can you make any
generalizations?
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CHAPTER

5Shared-Memory
Programming with OpenMP

Like Pthreads, OpenMP is an API for shared-memory parallel programming. The
“MP” in OpenMP stands for “multiprocessing,” a term that is synonymous with
shared-memory parallel computing. Thus, OpenMP is designed for systems in which
each thread or process can potentially have access to all available memory, and, when
we’re programming with OpenMP, we view our system as a collection of cores or
CPUs, all of which have access to main memory, as in Figure 5.1.

Although OpenMP and Pthreads are both APIs for shared-memory programming,
they have many fundamental differences. Pthreads requires that the programmer
explicitly specify the behavior of each thread. OpenMP, on the other hand, some-
times allows the programmer to simply state that a block of code should be executed
in parallel, and the precise determination of the tasks and which thread should execute
them is left to the compiler and the run-time system. This suggests a further differ-
ence between OpenMP and Pthreads, that is, that Pthreads (like MPI) is a library of
functions that can be linked to a C program, so any Pthreads program can be used
with any C compiler, provided the system has a Pthreads library. OpenMP, on the
other hand, requires compiler support for some operations, and hence it’s entirely
possible that you may run across a C compiler that can’t compile OpenMP programs
into parallel programs.

These differences also suggest why there are two standard APIs for shared-
memory programming: Pthreads is lower level and provides us with the power to
program virtually any conceivable thread behavior. This power, however, comes with
some associated cost—it’s up to us to specify every detail of the behavior of each
thread. OpenMP, on the other hand, allows the compiler and run-time system to deter-
mine some of the details of thread behavior, so it can be simpler to code some parallel
behaviors using OpenMP. The cost is that some low-level thread interactions can be
more difficult to program.

OpenMP was developed by a group of programmers and computer scien-
tists who believed that writing large-scale high-performance programs using APIs
such as Pthreads was too difficult, and they defined the OpenMP specification
so that shared-memory programs could be developed at a higher level. In fact,
OpenMP was explicitly designed to allow programmers to incrementally parallelize

Copyright c© 2011 Elsevier Inc. All rights reserved.
209An Introduction to Parallel Programming. DOI: 10.1016/B978-0-12-374260-5.00005-1
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FIGURE 5.1

A shared-memory system

existing serial programs; this is virtually impossible with MPI and fairly difficult with
Pthreads.

In this chapter, we’ll learn the basics of OpenMP. We’ll learn how to write a
program that can use OpenMP, and we’ll learn how to compile and run OpenMP pro-
grams. We’ll then learn how to exploit one of the most powerful features of OpenMP:
its ability to parallelize many serial for loops with only small changes to the source
code. We’ll then look at some other features of OpenMP: task-parallelism and explicit
thread synchronization. We’ll also look at some standard problems in shared-memory
programming: the effect of cache memories on shared-memory programming and
problems that can be encountered when serial code—especially a serial library—is
used in a shared-memory program. Let’s get started.

5.1 GETTING STARTED
OpenMP provides what’s known as a “directives-based” shared-memory API. In
C and C++, this means that there are special preprocessor instructions known as
pragmas. Pragmas are typically added to a system to allow behaviors that aren’t part
of the basic C specification. Compilers that don’t support the pragmas are free to
ignore them. This allows a program that uses the pragmas to run on platforms that
don’t support them. So, in principle, if you have a carefully written OpenMP pro-
gram, it can be compiled and run on any system with a C compiler, regardless of
whether the compiler supports OpenMP.

Pragmas in C and C++ start with

#pragma

As usual, we put the pound sign, #, in column 1, and like other preprocessor direc-
tives, we shift the remainder of the directive so that it is aligned with the rest of the
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code. Pragmas (like all preprocessor directives) are, by default, one line in length, so
if a pragma won’t fit on a single line, the newline needs to be “escaped”—that is,
preceded by a backslash \. The details of what follows the #pragma depend entirely
on which extensions are being used.

Let’s take a look at a very simple example, a “hello, world” program that uses
OpenMP. See Program 5.1.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 void Hello(void); /∗ Thread function ∗/
6
7 int main(int argc, char∗ argv[]) {
8 /∗ Get number of threads from command line ∗/
9 int thread count = strtol(argv[1], NULL, 10);

10
11 # pragma omp parallel num threads(thread count)
12 Hello();
13
14 return 0;
15 } /∗ main ∗/
16
17 void Hello(void) {
18 int my rank = omp get thread num();
19 int thread count = omp get num threads();
20
21 printf("Hello from thread %d of %d\n", my rank, thread count);
22
23 } /∗ Hello ∗/

Program 5.1: A “hello,world” program that uses OpenMP

5.1.1 Compiling and running OpenMP programs
To compile this with gcc we need to include the −fopenmp option:1

$ gcc −g −Wall −fopenmp −o omp hello omp hello.c

To run the program, we specify the number of threads on the command line. For
example, we might run the program with four threads and type

$ ./omp hello 4

1Some older versions of gcc may not include OpenMP support. Other compilers will, in general, use
different command-line options to specify that the source is an OpenMP program. For details on our
assumptions about compiler use, see Section 2.9.
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If we do this, the output might be

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

However, it should be noted that the threads are competing for access to stdout, so
there’s no guarantee that the output will appear in thread-rank order. For example, the
output might also be

Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

or

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

or any other permutation of the thread ranks.
If we want to run the program with just one thread, we can type

$ ./omp hello 1

and we would get the output

Hello from thread 0 of 1

5.1.2 The program
Let’s take a look at the source code. In addition to a collection of directives, OpenMP
consists of a library of functions and macros, so we usually need to include a header
file with prototypes and macro definitions. The OpenMP header file is omp.h, and we
include it in Line 3.

In our Pthreads programs, we specified the number of threads on the command
line. We’ll also usually do this with our OpenMP programs. In Line 9 we therefore
use the strtol function from stdlib.h to get the number of threads. Recall that the
syntax of this function is

long strtol(
const char∗ number p /∗ in ∗/,
char∗∗ end p /∗ out ∗/,
int base /∗ in ∗/);

The first argument is a string—in our example, it’s the command-line argument—
and the last argument is the numeric base in which the string is represented—in our
example, it’s base 10. We won’t make use of the second argument, so we’ll just pass
in a NULL pointer.
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If you’ve done a little C programming, there’s nothing really new up to this point.
When we start the program from the command line, the operating system starts a
single-threaded process and the process executes the code in the main function. How-
ever, things get interesting in Line 11. This is our first OpenMP directive, and we’re
using it to specify that the program should start some threads. Each thread that’s
forked should execute the Hello function, and when the threads return from the call
to Hello, they should be terminated, and the process should then terminate when it
executes the return statement.

That’s a lot of bang for the buck (or code). If you studied the Pthreads chapter,
you’ll recall that we had to write a lot of code to fork and join multiple threads: we
needed to allocate storage for a special struct for each thread, we used a for loop to
start each thread, and we used another for loop to terminate the threads. Thus, it’s
immediately evident that OpenMP is higher-level than Pthreads.

We’ve already seen that pragmas in C and C++ start with

# pragma

OpenMP pragmas always begin with

# pragma omp

Our first directive is a parallel directive, and, as you might have guessed it spec-
ifies that the structured block of code that follows should be executed by multiple
threads. A structured block is a C statement or a compound C statement with one
point of entry and one point of exit, although calls to the function exit are allowed.
This definition simply prohibits code that branches into or out of the middle of the
structured block.

Recollect that thread is short for thread of execution. The name is meant to sug-
gest a sequence of statements executed by a program. Threads are typically started
or forked by a process, and they share most of the resources of the process that starts
them—for example, access to stdin and stdout—but each thread has its own stack
and program counter. When a thread completes execution it joins the process that
started it. This terminology comes from diagrams that show threads as directed lines.
See Figure 5.2. For more details see Chapters 2 and 4.

At its most basic the parallel directive is simply

# pragma omp parallel

Thread

Thread

Process

FIGURE 5.2

A process forking and joining two threads
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and the number of threads that run the following structured block of code will be
determined by the run-time system. The algorithm used is fairly complicated; see the
OpenMP Standard [42] for details. However, if there are no other threads started, the
system will typically run one thread on each available core.

As we noted earlier, we’ll usually specify the number of threads on the command
line, so we’ll modify our parallel directives with the num threads clause. A clause
in OpenMP is just some text that modifies a directive. The num threads clause can
be added to a parallel directive. It allows the programmer to specify the number of
threads that should execute the following block:

# pragma omp parallel num threads(thread count)

It should be noted that there may be system-defined limitations on the number of
threads that a program can start. The OpenMP Standard doesn’t guarantee that this
will actually start thread count threads. However, most current systems can start
hundreds or even thousands of threads, so unless we’re trying to start a lot of threads,
we will almost always get the desired number of threads.

What actually happens when the program gets to the parallel directive? Prior
to the parallel directive, the program is using a single thread, the process started
when the program started execution. When the program reaches the parallel direc-
tive, the original thread continues executing and thread count − 1 additional threads
are started. In OpenMP parlance, the collection of threads executing the parallel
block—the original thread and the new threads—is called a team, the original thread
is called the master, and the additional threads are called slaves. Each thread in the
team executes the block following the directive, so in our example, each thread calls
the Hello function.

When the block of code is completed—in our example, when the threads return
from the call to Hello—there’s an implicit barrier. This means that a thread that has
completed the block of code will wait for all the other threads in the team to complete
the block—in our example, a thread that has completed the call to Hello will wait for
all the other threads in the team to return. When all the threads have completed the
block, the slave threads will terminate and the master thread will continue executing
the code that follows the block. In our example, the master thread will execute the
return statement in Line 14, and the program will terminate.

Since each thread has its own stack, a thread executing the Hello function will
create its own private, local variables in the function. In our example, when the func-
tion is called, each thread will get its rank or id and the number of threads in the team
by calling the OpenMP functions omp get thread num and omp get num threads,
respectively. The rank or id of a thread is an int that is in the range 0,1, . . . ,
thread count −1. The syntax for these functions is

int omp get thread num(void);
int omp get num threads(void);
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Since stdout is shared among the threads, each thread can execute the printf state-
ment, printing its rank and the number of threads. As we noted earlier, there is no
scheduling of access to stdout, so the actual order in which the threads print their
results is nondeterministic.

5.1.3 Error checking
In order to make the code more compact and more readable, our program doesn’t do
any error checking. Of course, this is dangerous, and, in practice, it’s a very good
idea—one might even say mandatory—to try to anticipate errors and check for them.
In this example, we should definitely check for the presence of a command-line argu-
ment, and, if there is one, after the call to strtol we should check that the value
is positive. We might also check that the number of threads actually created by the
parallel directive is the same as thread count, but in this simple example, this
isn’t crucial.

A second source of potential problems is the compiler. If the compiler doesn’t
support OpenMP, it will just ignore the parallel directive. However, the attempt
to include omp.h and the calls to omp get thread num and omp get num threads
will cause errors. To handle these problems, we can check whether the preprocessor
macro OPENMP is defined. If this is defined, we can include omp.h and make the
calls to the OpenMP functions. We might make the following modifications to our
program.

Instead of simply including omp.h in the line

#include <omp.h>

we can check for the definition of OPENMP before trying to include it:

#ifdef OPENMP
# include <omp.h>
#endif

Also, instead of just calling the OpenMP functions, we can first check whether
OPENMP is defined:

# ifdef OPENMP
int my rank = omp get thread num();
int thread count = omp get num threads();

# else
int my rank = 0;
int thread count = 1;

# endif

Here, if OpenMP isn’t available, we assume that the Hello function will be single-
threaded. Thus, the single thread’s rank will be 0 and the number of threads
will be one.
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The book’s website contains the source for a version of this program that makes
these checks. In order to make our code as clear as possible, we’ll usually show little,
if any, error checking in the code displayed in the text.

5.2 THE TRAPEZOIDAL RULE
Let’s take a look at a somewhat more useful (and more complicated) example: the
trapezoidal rule for estimating the area under a curve. Recall from Section 3.2 that
if y= f (x) is a reasonably nice function, and a< b are real numbers, then we can
estimate the area between the graph of f (x), the vertical lines x= a and x= b, and
the x-axis by dividing the interval [a,b] into n subintervals and approximating the
area over each subinterval by the area of a trapezoid. See Figure 5.3 for an example.

Also recall that if each subinterval has the same length and if we define h= (b−
a)/n, xi = a+ ih, i= 0,1, . . . ,n, then our approximation will be

h[ f (x0)/2+ f (x1)+ f (x2)+ ·· ·+ f (xn−1)+ f (xn)/2].

Thus, we can implement a serial algorithm using the following code:

/∗ Input: a, b, n ∗/
h = (b−a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n−1; i++) {

x i = a + i∗h;
approx += f(x i);

}

approx = h∗approx;

See Section 3.2.1 for details.

5.2.1 A first OpenMP version
Recall that we applied Foster’s parallel program design methodology to the
trapezoidal rule as described in the following list (see Section 3.2.2).

y

a b x a b

y

x

(a) (b)

FIGURE 5.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids
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FIGURE 5.4

Assignment of trapezoids to threads

1. We identified two types of tasks:
a. Computation of the areas of individual trapezoids, and
b. Adding the areas of trapezoids.

2. There is no communication among the tasks in the first collection, but each task
in the first collection communicates with task 1(b).

3. We assumed that there would be many more trapezoids than cores, so we aggre-
gated tasks by assigning a contiguous block of trapezoids to each thread (and a
single thread to each core).2 Effectively, this partitioned the interval [a,b] into
larger subintervals, and each thread simply applied the serial trapezoidal rule to
its subinterval. See Figure 5.4 for an example.

We aren’t quite done, however, since we still need to add up the threads’ results.
An obvious solution is to use a shared variable for the sum of all the threads’ results,
and each thread can add its (private) result into the shared variable. We would like to
have each thread execute a statement that looks something like

global result += my result;

However, as we’ve already seen, this can result in an erroneous value for
global result—if two (or more) threads attempt to simultaneously execute this
statement, the result will be unpredictable. For example, suppose that global result
has been initialized to 0, thread 0 has computed my result = 1, and thread 1

2Since we were discussing MPI, we actually used processes instead of threads.
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has computed my result = 2. Furthermore, suppose that the threads execute the
statement global result += my result according to the following timetable:

Time Thread 0 Thread 1

0 global result = 0 to register finish my result
1 my result = 1 to register global result = 0 to register
2 add my result to global result my result = 2 to register
3 store global result = 1 add my result to global result
4 store global result = 2

We see that the value computed by thread 0 (my result = 1) is overwritten by
thread 1.

Of course, the actual sequence of events might well be different, but unless
one thread finishes the computation global result += my result before the other
starts, the result will be incorrect. Recall that this is an example of a race
condition: multiple threads are attempting to access a shared resource, at least one
of the accesses is an update, and the accesses can result in an error. Also recall that
the code that causes the race condition, global result += my result, is called a
critical section. A critical section is code executed by multiple threads that updates a
shared resource, and the shared resource can only be updated by one thread at a time.

We therefore need some mechanism to make sure that once one thread has started
executing global result += my result, no other thread can start executing this
code until the first thread has finished. In Pthreads we used mutexes or semaphores.
In OpenMP we can use the critical directive

# pragma omp critical
global result += my result;

This directive tells the compiler that the system needs to arrange for the threads to
have mutually exclusive access to the following structured block of code. That is,
only one thread can execute the following structured block at a time. The code for
this version is shown in Program 5.2. We’ve omitted any error checking. We’ve also
omitted code for the function f (x).

In the main function, prior to Line 16, the code is single-threaded, and it simply
gets the number of threads and the input (a, b, and n). In Line 16 the parallel
directive specifies that the Trap function should be executed by thread count
threads. After returning from the call to Trap, any new threads that were started
by the parallel directive are terminated, and the program resumes execution with
only one thread. The one thread prints the result and terminates.

In the Trap function, each thread gets its rank and the total number of threads
in the team started by the parallel directive. Then each thread determines the
following:

1. The length of the bases of the trapezoids (Line 32)
2. The number of trapezoids assigned to each thread (Line 33)
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 void Trap(double a, double b, int n, double∗ global result p);
6
7 int main(int argc, char∗ argv[]) {
8 double global result = 0.0;
9 double a, b;

10 int n;
11 int thread count;
12
13 thread count = strtol(argv[1], NULL, 10);
14 printf("Enter a, b, and n\n");
15 scanf("%lf %lf %d", &a, &b, &n);
16 # pragma omp parallel num threads(thread count)
17 Trap(a, b, n, &global result);
18
19 printf("With n = %d trapezoids, our estimate\n", n);
20 printf("of the integral from %f to %f = %.14e\n",
21 a, b, global result);
22 return 0;
23 } /∗ main ∗/
24
25 void Trap(double a, double b, int n, double∗ global result p) {
26 double h, x, my result;
27 double local a, local b;
28 int i, local n;
29 int my rank = omp get thread num();
30 int thread count = omp get num threads();
31
32 h = (b−a)/n;
33 local n = n/thread count;
34 local a = a + my rank∗local n∗h;
35 local b = local a + local n∗h;
36 my result = (f(local a) + f(local b))/2.0;
37 for (i = 1; i <= local n−1; i++) {
38 x = local a + i∗h;
39 my result += f(x);
40 }

41 my result = my result∗h;
42
43 # pragma omp critical
44 ∗global result p += my result;
45 } /∗ Trap ∗/

Program 5.2: First OpenMP trapezoidal rule program
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3. The left and right endpoints of its interval (Lines 34 and 35, respectively)
4. Its contribution to global result (Lines 36–41)

The threads finish by adding in their individual results to global result in Lines 43
and 44.

We use the prefix local for some variables to emphasize that their values may
differ from the values of corresponding variables in the main function—for example,
local a may differ from a, although it is the thread’s left endpoint.

Notice that unless n is evenly divisible by thread count, we’ll use fewer than n
trapezoids for global result. For example, if n= 14 and thread count = 4, each
thread will compute

local n = n/thread count = 14/4 = 3.

Thus each thread will only use 3 trapezoids, and global result will be computed
with 4× 3= 12 trapezoids instead of the requested 14. So in the error checking
(which isn’t shown) we check that n is evenly divisible by thread count by doing
something like this:

if (n % thread count != 0) {
fprintf(stderr, "n must be evenly divisible by thread count\n");
exit(0);

}

Since each thread is assigned a block of local n trapezoids, the length of each
thread’s interval will be local n∗h, so the left endpoints will be

thread 0: a + 0∗local n∗h
thread 1: a + 1∗local n∗h
thread 2: a + 2∗local h∗h

. . .

and in Line 34, we assign

local a = a + my rank∗local n∗h;

Furthermore, since the length of each thread’s interval will be local n∗h, its right
endpoint will just be

local b = local a + local n∗h;

5.3 SCOPE OF VARIABLES
In serial programming, the scope of a variable consists of those parts of a program
in which the variable can be used. For example, a variable declared at the beginning
of a C function has “function-wide” scope, that is, it can only be accessed in the
body of the function. On the other hand, a variable declared at the beginning of a .c
file but outside any function has “file-wide” scope, that is, any function in the file
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in which the variable is declared can access the variable. In OpenMP, the scope of a
variable refers to the set of threads that can access the variable in a parallel block.
A variable that can be accessed by all the threads in the team has shared scope, while
a variable that can only be accessed by a single thread has private scope.

In the “hello, world” program, the variables used by each thread (my rank and
thread count) were declared in the Hello function, which is called inside the
parallel block. Consequently, the variables used by each thread are allocated from
the thread’s (private) stack, and hence all of the variables have private scope. This
is almost the case in the trapezoidal rule program; since the parallel block is just
a function call, all of the variables used by each thread in the Trap function are
allocated from the thread’s stack.

However, the variables that are declared in the main function (a, b, n,
global result, and thread count) are all accessible to all the threads in the team
started by the parallel directive. Hence, the default scope for variables declared
before a parallel block is shared. In fact, we’ve made implicit use of this: each
thread in the team gets the values of a, b, and n from the call to Trap. Since this call
takes place in the parallel block, it’s essential that each thread has access to a,b,
and n when their values are copied into the corresponding formal arguments.

Furthermore, in the Trap function, although global result p is a private vari-
able, it refers to the variable global result which was declared in main before the
parallel directive, and the value of global result is used to store the result that’s
printed out after the parallel block. So in the code

∗global result p += my result;

it’s essential that ∗global result p have shared scope. If it were private to each
thread, there would be no need for the critical directive. Furthermore, if it were
private, we would have a hard time determining the value of global result in main
after completion of the parallel block.

To summarize, then, variables that have been declared before a parallel direc-
tive have shared scope among the threads in the team, while variables declared in the
block (e.g., local variables in functions) have private scope. Furthermore, the value
of a shared variable at the beginning of the parallel block is the same as the
value before the block, and, after completion of the parallel block, the value of
the variable is the value at the end of the block.

We’ll shortly see that the default scope of a variable can change with other
directives, and that OpenMP provides clauses to modify the default scope.

5.4 THE REDUCTION CLAUSE
If we developed a serial implementation of the trapezoidal rule, we’d probably use a
slightly different function prototype. Rather than

void Trap(double a, double b, int n, double∗ global result p);



222 CHAPTER 5 Shared-Memory Programming with OpenMP

we would probably define

double Trap(double a, double b, int n);

and our function call would be

global result = Trap(a, b, n);

This is somewhat easier to understand and probably more attractive to all but the
most fanatical believers in pointers.

We resorted to the pointer version because we needed to add each thread’s local
calculation to get global result. However, we might prefer the following function
prototype:

double Local trap(double a, double b, int n);

With this prototype, the body of Local trap would be the same as the Trap function
in Program 5.2, except that there would be no critical section. Rather, each thread
would return its part of the calculation, the final value of its my result variable. If
we made this change, we might try modifying our parallel block so that it looks
like this:

global result = 0.0;
# pragma omp parallel num threads(thread count)
{

# pragma omp critical
global result += Local trap(double a, double b, int n);

}

Can you see a problem with this code? It should give the correct result. However,
since we’ve specified that the critical section is

global result += Local trap(double a, double b, int n);

the call to Local trap can only be executed by one thread at a time, and, effectively,
we’re forcing the threads to execute the trapezoidal rule sequentially. If we check the
run-time of this version, it may actually be slower with multiple threads than one
thread (see Exercise 5.3).

We can avoid this problem by declaring a private variable inside the parallel
block and moving the critical section after the function call:

global result = 0.0;
# pragma omp parallel num threads(thread count)
{

double my result = 0.0; /∗ private ∗/
my result += Local trap(double a, double b, int n);

# pragma omp critical
global result += my result;

}

Now the call to Local trap is outside the critical section, and the threads can exe-
cute their calls simultaneously. Furthermore, since my result is declared in the



5.4 The Reduction Clause 223

parallel block, it’s private, and before the critical section each thread will store
its part of the calculation in its my result variable.

OpenMP provides a cleaner alternative that also avoids serializing execution
of Local trap: we can specify that global result is a reduction variable. A
reduction operator is a binary operation (such as addition or multiplication) and
a reduction is a computation that repeatedly applies the same reduction operator to
a sequence of operands in order to get a single result. Furthermore, all of the inter-
mediate results of the operation should be stored in the same variable: the reduction
variable. For example, if A is an array of n ints, the computation

int sum = 0;
for (i = 0; i < n; i++)

sum += A[i];

is a reduction in which the reduction operator is addition.
In OpenMP it may be possible to specify that the result of a reduction is a reduc-

tion variable. To do this, a reduction clause can be added to a parallel directive.
In our example, we can modify the code as follows:

global result = 0.0;
# pragma omp parallel num threads(thread count) \

reduction(+: global result)
global result += Local trap(double a, double b, int n);

First note that the parallel directive is two lines long. Recall that C preprocessor
directives are, by default, only one line long, so we need to “escape” the newline
character by putting a backslash (\) immediately before it.

The code specifies that global result is a reduction variable and the plus sign
(“+”) indicates that the reduction operator is addition. Effectively, OpenMP creates a
private variable for each thread, and the run-time system stores each thread’s result in
this private variable. OpenMP also creates a critical section and the values stored in
the private variables are added in this critical section. Thus, the calls to Local trap
can take place in parallel.

The syntax of the reduction clause is

reduction(<operator>: <variable list>)

In C, operator can be any one of the operators +, ∗, −, &, |, ˆ, &&, || , although the use
of subtraction is a bit problematic, since subtraction isn’t associative or commutative.
For example, the serial code

result = 0;
for (i = 1; i <= 4; i++)

result −= i;

stores the value −10 in result. If, however, we split the iterations among two
threads, with thread 0 subtracting 1 and 2 and thread 1 subtracting 3 and 4, then thread
0 will compute −3 and thread 1 will compute −7 and, of course, −3− (−7)= 4.
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In principle, the compiler should determine that the threads’ individual results should
actually be added (−3+ (−7)=−10), and, in practice, this seems to be the case.
However, the OpenMP Standard [42] doesn’t seem to guarantee this.

It should also be noted that if a reduction variable is a float or a double, the
results may differ slightly when different numbers of threads are used. This is due to
the fact that floating point arithmetic isn’t associative. For example, if a, b, and c are
floats, then (a+ b)+ c may not be exactly equal to a+ (b+ c). See Exercise 5.5.

When a variable is included in a reduction clause, the variable itself is shared.
However, a private variable is created for each thread in the team. In the parallel
block each time a thread executes a statement involving the variable, it uses the pri-
vate variable. When the parallel block ends, the values in the private variables are
combined into the shared variable. Thus, our latest version of the code

global result = 0.0;
# pragma omp parallel num threads(thread count) \

reduction(+: global result)
global result += Local trap(double a, double b, int n);

effectively executes code that is identical to our previous version:

global result = 0.0;
# pragma omp parallel num threads(thread count)
{

double my result = 0.0; /∗ private ∗/
my result += Local trap(double a, double b, int n);

# pragma omp critical
global result += my result;

}

One final point to note is that the threads’ private variables are initialized to 0. This
is analogous to our initializing my result to zero. In general, the private variables
created for a reduction clause are initialized to the identity value for the opera-
tor. For example, if the operator is multiplication, the private variables would be
initialized to 1.

5.5 THE parallel for DIRECTIVE
As an alternative to our explicit parallelization of the trapezoidal rule, OpenMP pro-
vides the parallel for directive. Using it, we can parallelize the serial trapezoidal
rule

h = (b−a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n−1; i++)

approx += f(a + i∗h);
approx = h∗approx;
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by simply placing a directive immediately before the for loop:

h = (b−a)/n;
approx = (f(a) + f(b))/2.0;

# pragma omp parallel for num threads(thread count) \
reduction(+: approx)

for (i = 1; i <= n−1; i++)
approx += f(a + i∗h);

approx = h∗approx;

Like the parallel directive, the parallel for directive forks a team of threads to
execute the following structured block. However, the structured block following the
parallel for directive must be a for loop. Furthermore, with the parallel for
directive the system parallelizes the for loop by dividing the iterations of the loop
among the threads. The parallel for directive is therefore very different from the
parallel directive, because in a block that is preceded by a parallel directive, in
general, the work must be divided among the threads by the threads themselves.

In a for loop that has been parallelized with a parallel for directive, the
default partitioning, that is, of the iterations among the threads is up to the sys-
tem. However, most systems use roughly a block partitioning, that is, if there are
m iterations, then roughly the first m/thread count are assigned to thread 0, the
next m/thread count are assigned to thread 1, and so on.

Note that it was essential that we made approx a reduction variable. If we hadn’t,
it would have been an ordinary shared variable, and the body of the loop

approx += f(a + i∗h);

would be an unprotected critical section.
However, speaking of scope, the default scope for all variables in a parallel

directive is shared, but in our parallel for if the loop variable i were shared,
the variable update, i++, would also be an unprotected critical section. Hence, in
a loop that is parallelized with a parallel for directive, the default scope of the
loop variable is private; in our code, each thread in the team has its own copy of i.

5.5.1 Caveats
This is truly wonderful: It may be possible to parallelize a serial program that consists
of one large for loop by just adding a single parallel for directive. It may be
possible to incrementally parallelize a serial program that has many for loops by
successively placing parallel for directives before each loop.

However, things may not be quite as rosy as they seem. There are several caveats
associated with the use of the parallel for directive. First, OpenMP will only par-
allelize for loops. It won’t parallelize while loops or do−while loops. This may
not seem to be too much of a limitation, since any code that uses a while loop or
a do−while loop can be converted to equivalent code that uses a for loop instead.
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However, OpenMP will only parallelize for loops for which the number of iterations
can be determined

. from the for statement itself (that is, the code for (. . . ; . . . ; . . .)),
and. prior to execution of the loop.

For example, the “infinite loop”

for ( ; ; ) {
. . .

}

cannot be parallelized. Similarly, the loop

for (i = 0; i < n; i++) {
if ( . . . ) break;
. . .

}

cannot be parallelized, since the number of iterations can’t be determined from the
for statement alone. This for loop is also not a structured block, since the break adds
another point of exit from the loop.

In fact, OpenMP will only parallelize for loops that are in canonical form. Loops
in canonical form take one of the forms shown in Program 5.3. The variables and
expressions in this template are subject to some fairly obvious restrictions:

. The variable index must have integer or pointer type (e.g., it can’t be a float).. The expressions start, end, and incr must have a compatible type. For example,
if index is a pointer, then incr must have integer type.. The expressions start, end, and incr must not change during execution of the
loop.. During execution of the loop, the variable index can only be modified by the
“increment expression” in the for statement.

for



index++
++index

index < end index--
index <= end --index

index = start ; index >= end ; index += incr
index > end index -= incr

index = index + incr
index = incr + index
index = index - incr


Program 5.3: Legal forms for parallelizable for statements
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These restrictions allow the run-time system to determine the number of iterations
prior to execution of the loop.

The sole exception to the rule that the run-time system must be able to determine
the number of iterations prior to execution is that there can be a call to exit in the
body of the loop.

5.5.2 Data dependences
If a for loop fails to satisfy one of the rules outlined in the preceding section, the
compiler will simply reject it. For example, suppose we try to compile a program
with the following linear search function:

1 int Linear search(int key, int A[], int n) {
2 int i;
3 /∗ thread count is global ∗/
4 # pragma omp parallel for num threads(thread count)
5 for (i = 0; i < n; i++)
6 if (A[i] == key) return i;
7 return −1; /∗ key not in list ∗/
8 }

The gcc compiler reports:

Line 6: error: invalid exit from OpenMP structured block

A more insidious problem occurs in loops in which the computation in one iter-
ation depends on the results of one or more previous iterations. As an example,
consider the following code, which computes the first n fibonacci numbers:

fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)

fibo[i] = fibo[i−1] + fibo[i−2];

Although we may be suspicious that something isn’t quite right, let’s try parallellizing
the for loop with a parallel for directive:

fibo[0] = fibo[1] = 1;
# pragma omp parallel for num threads(thread count)

for (i = 2; i < n; i++)
fibo[i] = fibo[i−1] + fibo[i−2];

The compiler will create an executable without complaint. However, if we try running
it with more than one thread, we may find that the results are, at best, unpredictable.
For example, on one of our systems if we try using two threads to compute the first
10 Fibonacci numbers, we sometimes get

1 1 2 3 5 8 13 21 34 55,

which is correct. However, we also occasionally get

1 1 2 3 5 8 0 0 0 0.
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What happened? It appears that the run-time system assigned the computation of
fibo[2], fibo[3], fibo[4], and fibo[5] to one thread, while fibo[6], fibo[7],
fibo[8], and fibo[9] were assigned to the other. (Remember the loop starts with
i = 2.) In some runs of the program, everything is fine because the thread that was
assigned fibo[2], fibo[3], fibo[4], and fibo[5] finishes its computations before
the other thread starts. However, in other runs, the first thread has evidently not
computed fibo[4] and fibo[5] when the second computes fibo[6]. It appears that
the system has initialized the entries in fibo to 0, and the second thread is using the
values fibo[4] = 0 and fibo[5] = 0 to compute fibo[6]. It then goes on to use
fibo[5] = 0 and fibo[6] = 0 to compute fibo[7], and so on.

We see two important points here:

1. OpenMP compilers don’t check for dependences among iterations in a loop that’s
being parallelized with a parallel for directive. It’s up to us, the programmers,
to identify these dependences.

2. A loop in which the results of one or more iterations depend on other iterations
cannot, in general, be correctly parallelized by OpenMP.

The dependence of the computation of fibo[6] on the computation of fibo[5] is
called a data dependence. Since the value of fibo[5] is calculated in one iteration,
and the result is used in a subsequent iteration, the dependence is sometimes called a
loop-carried dependence.

5.5.3 Finding loop-carried dependences
Perhaps the first thing to observe is that when we’re attempting to use a parallel
for directive, we only need to worry about loop-carried dependences. We don’t need
to worry about more general data dependences. For example, in the loop

1 for (i = 0; i < n; i++) {
2 x[i] = a + i∗h;
3 y[i] = exp(x[i]);
4 }

there is a data dependence between Lines 2 and 3. However, there is no problem with
the parallelization

1 # pragma omp parallel for num threads(thread count)
2 for (i = 0; i < n; i++) {
3 x[i] = a + i∗h;
4 y[i] = exp(x[i]);
5 }

since the computation of x[i] and its subsequent use will always be assigned to the
same thread.

Also observe that at least one of the statements must write or update the variable
in order for the statements to represent a dependence, so in order to detect a loop-
carried dependence, we should only concern ourselves with variables that are updated
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by the loop body. That is, we should look for variables that are read or written in one
iteration, and written in another. Let’s look at a couple of examples.

5.5.4 Estimating π
One way to get a numerical approximation to π is to use many terms in the formula3

π = 4

[
1−

1

3
+

1

5
−

1

7
+ ·· ·

]
= 4

∞∑
k=0

(−1)k

2k+ 1
.

We can implement this formula in serial code with

1 double factor = 1.0;
2 double sum = 0.0;
3 for (k = 0; k < n; k++) {
4 sum += factor/(2∗k+1);
5 factor = −factor;
6 }

7 pi approx = 4.0∗sum;

(Why is it important that factor is a double instead of an int or a long?)
How can we parallelize this with OpenMP? We might at first be inclined to do

something like this:

1 double factor = 1.0;
2 double sum = 0.0;
3 # pragma omp parallel for num threads(thread count) \
4 reduction(+:sum)
5 for (k = 0; k < n; k++) {
6 sum += factor/(2∗k+1);
7 factor = −factor;
8 }

9 pi approx = 4.0∗sum;

However, it’s pretty clear that the update to factor in Line 7 in iteration k and the
subsequent increment of sum in Line 6 in iteration k+1 is an instance of a loop-carried
dependence. If iteration k is assigned to one thread and iteration k+1 is assigned to
another thread, there’s no guarantee that the value of factor in Line 6 will be correct.
In this case we can fix the problem by examining the series

∞∑
k=0

(−1)k

2k+ 1
.

3This is by no means the best method for approximating π , since it requires a lot of terms to get
a reasonably accurate result. However, we’re more interested in the formula itself than the actual
estimate.
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We see that in iteration k the value of factor should be (−1)k, which is +1 if k is
even and −1 if k is odd, so if we replace the code

1 sum += factor/(2∗k+1);
2 factor = −factor;

by

1 if (k % 2 == 0)
2 factor = 1.0;
3 else
4 factor = −1.0;
5 sum += factor/(2∗k+1);

or, if you prefer the ?: operator,

1 factor = (k % 2 == 0) ? 1.0 : −1.0;
2 sum += factor/(2∗k+1);

we will eliminate the loop dependency.
However, things still aren’t quite right. If we run the program on one of our

systems with just two threads and n= 1000, the result is consistently wrong. For
example,

1 With n = 1000 terms and 2 threads,
2 Our estimate of pi = 2.97063289263385
3 With n = 1000 terms and 2 threads,
4 Our estimate of pi = 3.22392164798593

On the other hand, if we run the program with only one thread, we always get

1 With n = 1000 terms and 1 threads,
2 Our estimate of pi = 3.14059265383979

What’s wrong here?
Recall that in a block that has been parallelized by a parallel for directive,

by default any variable declared before the loop—with the sole exception of the
loop variable—is shared among the threads. So factor is shared and, for exam-
ple, thread 0 might assign it the value 1, but before it can use this value in the update
to sum, thread 1 could assign it the value −1. Therefore, in addition to eliminating
the loop-carried dependence in the calculation of factor, we need to insure that
each thread has its own copy of factor. That is, in order to make our code correct,
we need to also insure that factor has private scope. We can do this by adding a
private clause to the parallel for directive.

1 double sum = 0.0;
2 # pragma omp parallel for num threads(thread count) \
3 reduction(+:sum) private(factor)
4 for (k = 0; k < n; k++) {
5 if (k % 2 == 0)
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6 factor = 1.0;
7 else
8 factor = −1.0;
9 sum += factor/(2∗k+1);

10 }

The private clause specifies that for each variable listed inside the parentheses,
a private copy is to be created for each thread. Thus, in our example, each of the
thread count threads will have its own copy of the variable factor, and hence
the updates of one thread to factor won’t affect the value of factor in another
thread.

It’s important to remember that the value of a variable with private scope is
unspecified at the beginning of a parallel block or a parallel for block. Its value
is also unspecified after completion of a parallel or parallel for block. So, for
example, the output of the first printf statement in the following code is unspeci-
fied, since it prints the private variable x before it’s explicitly initialized. Similarly,
the output of the final printf is unspecified, since it prints x after the completion of
the parallel block.

1 int x = 5;
2 # pragma omp parallel num threads(thread count) \
3 private(x)
4 {

5 int my rank = omp get thread num();
6 printf("Thread %d > before initialization, x = %d\n",
7 my rank, x);
8 x = 2∗my rank + 2;
9 printf("Thread %d > after initialization, x = %d\n",

10 my rank, x);
11 }

12 printf("After parallel block, x = %d\n", x);

5.5.5 More on scope
Our problem with the variable factor is a common one. We usually need to think
about the scope of each variable in a parallel block or a parallel for block.
Therefore, rather than letting OpenMP decide on the scope of each variable, it’s a
very good practice for us as programmers to specify the scope of each variable in a
block. In fact, OpenMP provides a clause that will explicitly require us to do this: the
default clause. If we add the clause

default(none)

to our parallel or parallel for directive, then the compiler will require that we
specify the scope of each variable we use in the block and that has been declared
outside the block. (Variables that are declared within the block are always private,
since they are allocated on the thread’s stack.)
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For example, using a default(none) clause, our calculation of π could be written
as follows:

double sum = 0.0;
# pragma omp parallel for num threads(thread count) \

default(none) reduction(+:sum) private(k, factor) \
shared(n)

for (k = 0; k < n; k++) {
if (k % 2 == 0)

factor = 1.0;
else

factor = −1.0;
sum += factor/(2∗k+1);

}

In this example, we use four variables in the for loop. With the default clause, we
need to specify the scope of each. As we’ve already noted, sum is a reduction variable
(which has properties of both private and shared scope). We’ve also already noted that
factor and the loop variable k should have private scope. Variables that are never
updated in the parallel or parallel for block, such as n in this example, can be
safely shared. Recall that unlike private variables, shared variables have the same
value in the parallel or parallel for block that they had before the block, and
their value after the block is the same as their last value in the block. Thus, if n were
initialized before the block to 1000, it would retain this value in the parallel for
statement, and since the value isn’t changed in the for loop, it would retain this value
after the loop has completed.

5.6 MORE ABOUT LOOPS IN OPENMP: SORTING
5.6.1 Bubble sort
Recollect that the serial bubble sort algorithm for sorting a list of integers can be
implemented as follows:

for (list length = n; list length >= 2; list length−−)
for (i = 0; i < list length−1; i++)

if (a[i] > a[i+1]) {
tmp = a[i];
a[i] = a[i+1];
a[i+1] = tmp;

}

Here, a stores n ints and the algorithm sorts them in increasing order. The outer
loop first finds the largest element in the list and stores it in a[n−1]; it then finds
the next-to-the-largest element and stores it in a[n−2], and so on. So, effectively,
the first pass is working with the full n-element list. The second is working with
all of the elements, except the largest; it’s working with an n− 1-element list,
and so on.
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The inner loop compares consecutive pairs of elements in the current list. When
a pair is out of order (a[i] > a[i+1]) it swaps them. This process of swapping will
move the largest element to the last slot in the “current” list, that is, the list consisting
of the elements

a[0], a[1], . . . , a[list length−1]

It’s pretty clear that there’s a loop-carried dependence in the outer loop; in any
iteration of the outer loop the contents of the current list depends on the previous
iterations of the outer loop. For example, if at the start of the algorithm a = 3, 4,
1, 2, then the second iteration of the outer loop should work with the list 3, 1, 2,
since the 4 should be moved to the last position by the first iteration. But if the first
two iterations are executing simultaneously, it’s possible that the effective list for the
second iteration will contain 4.

The loop-carried dependence in the inner loop is also fairly easy to see. In iter-
ation i the elements that are compared depend on the outcome of iteration i− 1. If
in iteration i− 1, a[i−1] and a[i] are not swapped, then iteration i should compare
a[i] and a[i+1]. If, on the other hand, iteration i− 1 swaps a[i−1] and a[i], then
iteration i should be comparing the original a[i−1] (which is now a[i]) and a[i+1].
For example, suppose the current list is {3,1,2}. Then when i= 1, we should com-
pare 3 and 2, but if the i= 0 and the i= 1 iterations are happening simultaneously,
it’s entirely possible that the i= 1 iteration will compare 1 and 2.

It’s also not at all clear how we might remove either loop-carried dependence
without completely rewriting the algorithm. It’s important to keep in mind that even
though we can always find loop-carried dependences, it may be difficult or impos-
sible to remove them. The parallel for directive is not a universal solution to the
problem of parallelizing for loops.

5.6.2 Odd-even transposition sort
Odd-even transposition sort is a sorting algorithm that’s similar to bubble sort, but
that has considerably more opportunities for parallelism. Recall from Section 3.7.1
that serial odd-even transposition sort can be implemented as follows:

for (phase = 0; phase < n; phase++)
if (phase % 2 == 0)

for (i = 1; i < n; i += 2)
if (a[i−1] > a[i]) Swap(&a[i−1],&a[i]);

else
for (i = 1; i < n−1; i += 2)

if (a[i] > a[i+1]) Swap(&a[i], &a[i+1]);

The list a stores n ints, and the algorithm sorts them into increasing order. During an
“even phase” (phase % 2 == 0), each odd-subscripted element, a[i], is compared
to the element to its “left,” a[i−1], and if they’re out of order, they’re swapped.
During an “odd” phase, each odd-subscripted element is compared to the element to
its right, and if they’re out of order, they’re swapped. A theorem guarantees that after
n phases, the list will be sorted.
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Table 5.1 Serial Odd-Even
Transposition Sort

Subscript in Array

Phase 0 1 2 3

0 9 ↔ 7 8 ↔ 6
7 9 6 8

1 7 9 ↔ 6 8
7 6 9 8

2 7 ↔ 6 9 ↔ 8
6 7 8 9

3 6 7 ↔ 8 9
6 7 8 9

As a brief example, suppose a = {9, 7, 8, 6}. Then the phases are shown in
Table 5.1. In this case, the final phase wasn’t necessary, but the algorithm doesn’t
bother checking whether the list is already sorted before carrying out each phase.

It’s not hard to see that the outer loop has a loop-carried dependence. As an exam-
ple, suppose as before that a = {9, 7, 8, 6}. Then in phase 0 the inner loop will
compare elements in the pairs (9,7) and (8,6), and both pairs are swapped. So for
phase 1 the list should be {7, 9, 6, 8}, and during phase 1 the elements in the
pair (9,6) should be compared and swapped. However, if phase 0 and phase 1 are
executed simultaneously, the pair that’s checked in phase 1 might be (7,8), which
is in order. Furthermore, it’s not clear how one might eliminate this loop-carried
dependence, so it would appear that parallelizing the outer for loop isn’t an option.

The inner for loops, however, don’t appear to have any loop-carried depen-
dences. For example, in an even phase loop, variable i will be odd, so for two distinct
values of i, say i= j and i= k, the pairs { j− 1, j} and {k− 1,k} will be be disjoint.
The comparison and possible swaps of the pairs (a[j−1], a[j]) and (a[k−1], a[k])
can therefore proceed simultaneously.

Thus, we could try to parallelize odd-even transposition sort using the code shown
in Program 5.4, but there are a couple of potential problems. First, although any
iteration of, say, one even phase doesn’t depend on any other iteration of that phase,
we’ve already noted that this is not the case for iterations in phase p and phase p+ 1.
We need to be sure that all the threads have finished phase p before any thread starts
phase p+ 1. However, like the parallel directive, the parallel for directive has
an implicit barrier at the end of the loop, so none of the threads will proceed to the
next phase, phase p+ 1, until all of the threads have completed the current phase,
phase p.

A second potential problem is the overhead associated with forking and joining
the threads. The OpenMP implementation may fork and join thread count threads
on each pass through the body of the outer loop. The first row of Table 5.2 shows
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1 for (phase = 0; phase < n; phase++) {
2 if (phase % 2 == 0)
3 # pragma omp parallel for num threads(thread count) \
4 default(none) shared(a, n) private(i, tmp)
5 for (i = 1; i < n; i += 2) {
6 if (a[i−1] > a[i]) {
7 tmp = a[i−1];
8 a[i−1] = a[i];
9 a[i] = tmp;

10 }

11 }

12 else
13 # pragma omp parallel for num threads(thread count) \
14 default(none) shared(a, n) private(i, tmp)
15 for (i = 1; i < n−1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }

21 }

22 }

Program 5.4: First OpenMP implementation of odd-even sort

Table 5.2 Odd-Even Sort with Two parallel for
Directives and Two for Directives (times are in seconds)

thread count 1 2 3 4

Two parallel for directives 0.770 0.453 0.358 0.305
Two for directives 0.732 0.376 0.294 0.239

run-times for 1, 2, 3, and 4 threads on one of our systems when the input list contained
20,000 elements.

These aren’t terrible times, but let’s see if we can do better. Each time we execute
one of the inner loops, we use the same number of threads, so it would seem to
be superior to fork the threads once and reuse the same team of threads for each
execution of the inner loops. Not surprisingly, OpenMP provides directives that allow
us to do just this. We can fork our team of thread count threads before the outer loop
with a parallel directive. Then, rather than forking a new team of threads with each
execution of one of the inner loops, we use a for directive, which tells OpenMP to
parallelize the for loop with the existing team of threads. This modification to the
original OpenMP implementation is shown in Program 5.5

The for directive, unlike the parallel for directive, doesn’t fork any threads.
It uses whatever threads have already been forked in the enclosing parallel block.
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1 # pragma omp parallel num threads(thread count) \
2 default(none) shared(a, n) private(i, tmp, phase)
3 for (phase = 0; phase < n; phase++) {
4 if (phase % 2 == 0)
5 # pragma omp for
6 for (i = 1; i < n; i += 2) {
7 if (a[i−1] > a[i]) {
8 tmp = a[i−1];
9 a[i−1] = a[i];

10 a[i] = tmp;
11 }

12 }

13 else
14 # pragma omp for
15 for (i = 1; i < n−1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }

21 }

22 }

Program 5.5: Second OpenMP implementation of odd-even sort

There is an implicit barrier at the end of the loop. The results of the code—the final
list—will therefore be the same as the results obtained from the original parallelized
code.

Run-times for this second version of odd-even sort are in the second row of
Table 5.2. When we’re using two or more threads, the version that uses two for direc-
tives is at least 17% faster than the version that uses two parallel for directives, so
for this system the slight effort involved in making the change is well worth it.

5.7 SCHEDULING LOOPS
When we first encountered the parallel for directive, we saw that the exact assign-
ment of loop iterations to threads is system dependent. However, most OpenMP
implementations use roughly a block partitioning: if there are n iterations in the serial
loop, then in the parallel loop the first n/thread count are assigned to thread 0, the
next n/thread count are assigned to thread 1, and so on. It’s not difficult to think of
situations in which this assignment of iterations to threads would be less than optimal.
For example, suppose we want to parallelize the loop

sum = 0.0;
for (i = 0; i <= n; i++)

sum += f(i);

Also suppose that the time required by the call to f is proportional to the size of the
argument i. Then a block partitioning of the iterations will assign much more work
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to thread thread count− 1 than it will assign to thread 0. A better assignment of
work to threads might be obtained with a cyclic partitioning of the iterations among
the threads. In a cyclic partitioning, the iterations are assigned, one at a time, in
a “round-robin” fashion to the threads. Suppose t = thread count. Then a cyclic
partitioning will assign the iterations as follows:

Thread Iterations

0 0, n/t, 2n/t, . . .
1 1, n/t+1, 2n/t+1, . . .
...

...
t−1 t−1, n/t+ t−1, 2n/t+ t−1, . . .

To get a feel for how drastically this can affect performance, we wrote a program in
which we defined

double f(int i) {
int j, start = i∗(i+1)/2, finish = start + i;
double return val = 0.0;

for (j = start; j <= finish; j++) {
return val += sin(j);

}

return return val;
} /∗ f ∗/

The call f (i) calls the sine function i times, and, for example, the time to execute f (2i)
requires approximately twice as much time as the time to execute f (i).

When we ran the program with n= 10,000 and one thread, the run-time was 3.67
seconds. When we ran the program with two threads and the default assignment—
iterations 0–5000 on thread 0 and iterations 5001–10,000 on thread 1—the run-time
was 2.76 seconds. This is a speedup of only 1.33. However, when we ran the program
with two threads and a cyclic assignment, the run-time was decreased to 1.84 seconds.
This is a speedup of 1.99 over the one-thread run and a speedup of 1.5 over the
two-thread block partition!

We can see that a good assignment of iterations to threads can have a very sig-
nificant effect on performance. In OpenMP, assigning iterations to threads is called
scheduling, and the schedule clause can be used to assign iterations in either a
parallel for or a for directive.

5.7.1 The schedule clause
In our example, we already know how to obtain the default schedule: we just add a
parallel for directive with a reduction clause:

sum = 0.0;
# pragma omp parallel for num threads(thread count) \

reduction(+:sum)
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for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
# pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11
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If schedule(static,4) is used, the iterations will be assigned as

Thread 0: 0,1,2,3

Thread 1: 4,5,6,7

Thread 2: 8,9,10,11

Thus the clause schedule(static, total iterations/thread count) is more or
less equivalent to the default schedule used by most implementations of OpenMP.

The chunksize can be omitted. If it is omitted, the chunksize is approximately
total iterations/thread count.

5.7.3 The dynamic and guided schedule types
In a dynamic schedule, the iterations are also broken up into chunks of chunksize
consecutive iterations. Each thread executes a chunk, and when a thread finishes a
chunk, it requests another one from the run-time system. This continues until all
the iterations are completed. The chunksize can be omitted. When it is omitted, a
chunksize of 1 is used.

In a guided schedule, each thread also executes a chunk, and when a thread fin-
ishes a chunk, it requests another one. However, in a guided schedule, as chunks
are completed, the size of the new chunks decreases. For example, on one of our
systems, if we run the trapezoidal rule program with the parallel for directive
and a schedule(guided) clause, then when n= 10,000 and thread count= 2, the
iterations are assigned as shown in Table 5.3. We see that the size of the chunk is
approximately the number of iterations remaining divided by the number of threads.
The first chunk has size 9999/2≈ 5000, since there are 9999 unassigned iterations.
The second chunk has size 4999/2≈ 2500, and so on.

In a guided schedule, if no chunksize is specified, the size of the chunks
decreases down to 1. If chunksize is specified, it decreases down to chunksize,
with the exception that the very last chunk can be smaller than chunksize.

5.7.4 The runtime schedule type
To understand schedule(runtime) we need to digress for a moment and talk about
environment variables. As the name suggests, environment variables are named
values that can be accessed by a running program. That is, they’re available in the
program’s environment. Some commonly used environment variables are PATH, HOME,
and SHELL. The PATH variable specifies which directories the shell should search
when it’s looking for an executable. It’s usually defined in both Unix and Win-
dows. The HOME variable specifies the location of the user’s home directory, and the
SHELL variable specifies the location of the executable for the user’s shell. These
are usually defined in Unix systems. In both Unix-like systems (e.g., Linux and
Mac OS X) and Windows, environment variables can be examined and specified
on the command line. In Unix-like systems, you can use the shell’s command line.
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Table 5.3 Assignment of Trapezoidal Rule Iterations 1–9999
using a guided Schedule with Two Threads

Thread Chunk Size of Chunk Remaining Iterations

0 1–5000 5000 4999
1 5001–7500 2500 2499
1 7501–8750 1250 1249
1 8751–9375 625 624
0 9376–9687 312 312
1 9688–9843 156 156
0 9844–9921 78 78
1 9922–9960 39 39
1 9961–9980 20 19
1 9981–9990 10 9
1 9991–9995 5 4
0 9996–9997 2 2
1 9998–9998 1 1
0 9999–9999 1 0

In Windows systems, you can use the command line in an integrated development
environment.

As an example, if we’re using the bash shell, we can examine the value of an
environment variable by typing

$ echo $PATH

and we can use the export command to set the value of an environment variable

$ export TEST VAR="hello"

For details about how to examine and set environment variables for your particular
system, you should consult with your local expert.

When schedule(runtime) is specified, the system uses the environment vari-
able OMP SCHEDULE to determine at run-time how to schedule the loop. The
OMP SCHEDULE environment variable can take on any of the values that can be used
for a static, dynamic, or guided schedule. For example, suppose we have a parallel
for directive in a program and it has been modified by schedule(runtime). Then
if we use the bash shell, we can get a cyclic assignment of iterations to threads by
executing the command

$ export OMP SCHEDULE="static,1"

Now, when we start executing our program, the system will schedule the iterations of
the for loop as if we had the clause schedule(static,1) modifiying the parallel
for directive.
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5.7.5 Which schedule?
If we have a for loop that we’re able to parallelize, how do we decide which type
of schedule we should use and what the chunksize should be? As you may have
guessed, there is some overhead associated with the use of a schedule clause. Fur-
thermore, the overhead is greater for dynamic schedules than static schedules, and
the overhead associated with guided schedules is the greatest of the three. Thus,
if we’re getting satisfactory performance without a schedule clause, we should
go no further. However, if we suspect that the performance of the default schedule
can be substantially improved, we should probably experiment with some different
schedules.

In the example at the beginning of this section, when we switched from the
default schedule to schedule(static,1), the speedup of the two-threaded execu-
tion of the program increased from 1.33 to 1.99. Since it’s extremely unlikely that
we’ll get speedups that are significantly better than 1.99, we can just stop here, at
least if we’re only going to use two threads with 10,000 iterations. If we’re going to
be using varying numbers of threads and varying numbers of iterations, we need to
do more experimentation, and it’s entirely possible that we’ll find that the optimal
schedule depends on both the number of threads and the number of iterations.

It can also happen that we’ll decide that the performance of the default schedule
isn’t very good, and we’ll proceed to search through a large array of schedules and
iteration counts only to conclude that our loop doesn’t parallelize very well and no
schedule is going to give us much improved performance. For an example of this, see
Programming Assignment 5.4.

There are some situations in which it’s a good idea to explore some schedules
before others:

. If each iteration of the loop requires roughly the same amount of computation,
then it’s likely that the default distribution will give the best performance.. If the cost of the iterations decreases (or increases) linearly as the loop exe-
cutes, then a static schedule with small chunksizes will probably give the best
performance.. If the cost of each iteration can’t be determined in advance, then it may make sense
to explore a variety of scheduling options. The schedule(runtime) clause can
be used here, and the different options can be explored by running the program
with different assignments to the environment variable OMP SCHEDULE.

5.8 PRODUCERS AND CONSUMERS
Let’s take a look at a parallel problem that isn’t amenable to parallelization using a
parallel for or for directive.

5.8.1 Queues
Recall that a queue is a list abstract datatype in which new elements are inserted
at the “rear” of the queue and elements are removed from the “front” of the queue.
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A queue can thus be viewed as an abstraction of a line of customers waiting to pay
for their groceries in a supermarket. The elements of the list are the customers. New
customers go to the end or “rear” of the line, and the next customer to check out is
the customer standing at the “front” of the line.

When a new entry is added to the rear of a queue, we sometimes say that the entry
has been “enqueued,” and when an entry is removed from the front of a queue, we
sometimes say that the entry has been “dequeued.”

Queues occur frequently in computer science. For example, if we have a number
of processes, each of which wants to store some data on a hard drive, then a natural
way to insure that only one process writes to the disk at a time is to have the processes
form a queue, that is, the first process that wants to write gets access to the drive first,
the second process gets access to the drive next, and so on.

A queue is also a natural data structure to use in many multithreaded appli-
cations. For example, suppose we have several “producer” threads and several
“consumer” threads. The producer threads might “produce” requests for data from
a server—for example, current stock prices—while the consumer threads might
“consume” the request by finding or generating the requested data—the current
stock prices. The producer threads could enqueue the requested prices, and the
consumer threads could dequeue them. In this example, the process wouldn’t be
completed until the consumer threads had given the requested data to the producer
threads.

5.8.2 Message-passing
Another natural application would be implementing message-passing on a shared-
memory system. Each thread could have a shared message queue, and when one
thread wanted to “send a message” to another thread, it could enqueue the message
in the destination thread’s queue. A thread could receive a message by dequeuing the
message at the head of its message queue.

Let’s implement a relatively simple message-passing program in which each
thread generates random integer “messages” and random destinations for the mes-
sages. After creating the message, the thread enqueues the message in the appropriate
message queue. After sending a message, a thread checks its queue to see if it has
received a message. If it has, it dequeues the first message in its queue and prints it
out. Each thread alternates between sending and trying to receive messages. We’ll let
the user specify the number of messages each thread should send. When a thread is
done sending messages, it receives messages until all the threads are done, at which
point all the threads quit. Pseudocode for each thread might look something like this:

for (sent msgs = 0; sent msgs < send max; sent msgs++) {
Send msg();
Try receive();

}

while (!Done())
Try receive();
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5.8.3 Sending messages
Note that accessing a message queue to enqueue a message is probably a critical
section. Although we haven’t looked into the details of the implementation of the
message queue, it seems likely that we’ll want to have a variable that keeps track of
the rear of the queue. For example, if we use a singly linked list with the tail of the list
corresponding to the rear of the queue, then, in order to efficiently enqueue, we would
want to store a pointer to the rear. When we enqueue a new message, we’ll need to
check and update the rear pointer. If two threads try to do this simultaneously, we
may lose a message that has been enqueued by one of the threads. (It might help to
draw a picture!) The results of the two operations will conflict, and hence enqueueing
a message will form a critical section.

Pseudocode for the Send msg() function might look something like this:

mesg = random();
dest = random() % thread count;

# pragma omp critical
Enqueue(queue, dest, my rank, mesg);

Note that this allows a thread to send a message to itself.

5.8.4 Receiving messages
The synchronization issues for receiving a message are a little different. Only the
owner of the queue (that is, the destination thread) will dequeue from a given message
queue. As long as we dequeue one message at a time, if there are at least two messages
in the queue, a call to Dequeue can’t possibly conflict with any calls to Enqueue,
so if we keep track of the size of the queue, we can avoid any synchronization (for
example, critical directives), as long as there are at least two messages.

Now you may be thinking, “What about the variable storing the size of the
queue?” This would be a problem if we simply store the size of the queue. However,
if we store two variables, enqueued and dequeued, then the number of messages in
the queue is

queue size = enqueued − dequeued

and the only thread that will update dequeued is the owner of the queue. Observe that
one thread can update enqueued at the same time that another thread is using it to
compute queue size. To see this, let’s suppose thread q is computing queue size. It
will either get the old value of enqueued or the new value. It may therefore compute
a queue size of 0 or 1 when queue size should actually be 1 or 2, respectively, but
in our program this will only cause a modest delay. Thread q will try again later if
queue size is 0 when it should be 1, and it will execute the critical section directive
unnecessarily if queue size is 1 when it should be 2.

Thus, we can implement Try receive as follows:

queue size = enqueued − dequeued;
if (queue size == 0) return;
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else if (queue size == 1)
# pragma omp critical

Dequeue(queue, &src, &mesg);
else

Dequeue(queue, &src, &mesg);
Print message(src, mesg);

5.8.5 Termination detection
We also need to think about implementation of the Done function. First note that the
following “obvious” implementation will have problems:

queue size = enqueued − dequeued;
if (queue size == 0)

return TRUE;
else

return FALSE;

If thread u executes this code, it’s entirely possible that some thread—call it thread
v—will send a message to thread u after u has computed queue size = 0. Of course,
after thread u computes queue size = 0, it will terminate and the message sent by
thread v will never be received.

However, in our program, after each thread has completed the for loop, it won’t
send any new messages. Thus, if we add a counter done sending, and each thread
increments this after completing its for loop, then we can implement Done as
follows:

queue size = enqueued − dequeued;
if (queue size == 0 && done sending == thread count)

return TRUE;
else

return FALSE;

5.8.6 Startup
When the program begins execution, a single thread, the master thread, will get
command-line arguments and allocate an array of message queues, one for each
thread. This array needs to be shared among the threads, since any thread can send to
any other thread, and hence any thread can enqueue a message in any of the queues.
Given that a message queue will (at a minimum) store

. a list of messages,. a pointer or index to the rear of the queue,. a pointer or index to the front of the queue,. a count of messages enqueued, and. a count of messages dequeued,

it makes sense to store the queue in a struct, and in order to reduce the amount of
copying when passing arguments, it also makes sense to make the message queue
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an array of pointers to structs. Thus, once the array of queues is allocated by the
master thread, we can start the threads using a parallel directive, and each thread
can allocate storage for its individual queue.

An important point here is that one or more threads may finish allocating their
queues before some other threads. If this happens, the threads that finish first could
start trying to enqueue messages in a queue that hasn’t been allocated and cause the
program to crash. We therefore need to make sure that none of the threads starts
sending messages until all the queues are allocated. Recall that we’ve seen that sev-
eral OpenMP directives provide implicit barriers when they’re completed, that is,
no thread will proceed past the end of the block until all the threads in the team have
completed the block. In this case, though, we’ll be in the middle of a parallel block,
so we can’t rely on an implicit barrier from some other OpenMP construct—we need
an explicit barrier. Fortunately, OpenMP provides one:

# pragma omp barrier

When a thread encounters the barrier, it blocks until all the threads in the team have
reached the barrier. After all the threads have reached the barrier, all the threads in
the team can proceed.

5.8.7 The atomic directive
After completing its sends, each thread increments done sending before proceeding
to its final loop of receives. Clearly, incrementing done sending is a critical section,
and we could protect it with a critical directive. However, OpenMP provides a
potentially higher performance directive: the atomic directive:

# pragma omp atomic

Unlike the critical directive, it can only protect critical sections that consist of a
single C assignment statement. Further, the statement must have one of the following
forms:

x <op>= <expression>;
x++;
++x;
x−−;
−−x;

Here <op> can be one of the binary operators

+, ∗, −, /, &, ˆ, |, <<, or >>.

It’s also important to remember that <expression> must not reference x.
It should be noted that only the load and store of x are guaranteed to be protected.

For example, in the code

# pragma omp atomic
x += y++;
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a thread’s update to x will be completed before any other thread can begin updat-
ing x. However, the update to y may be unprotected and the results may be
unpredictable.

The idea behind the atomic directive is that many processors provide a
special load-modify-store instruction, and a critical section that only does a load-
modify-store can be protected much more efficiently by using this special instruc-
tion rather than the constructs that are used to protect more general critical
sections.

5.8.8 Critical sections and locks
To finish our discussion of the message-passing program, we need to take a more
careful look at OpenMP’s specification of the critical directive. In our earlier
examples, our programs had at most one critical section, and the critical directive
forced mutually exclusive access to the section by all the threads. In this program,
however, the use of critical sections is more complex. If we simply look at the
source code, we’ll see three blocks of code preceded by a critical or an atomic
directive:

. done sending++;. Enqueue(q p, my rank, mesg);. Dequeue(q p, &src, &mesg);

However, we don’t need to enforce exclusive access across all three of these blocks of
code. We don’t even need to enforce completely exclusive access within the second
and third blocks. For example, it would be fine for, say, thread 0 to enqueue a message
in thread 1’s queue at the same time that thread 1 is enqueuing a message in thread
2’s queue. But for the second and third blocks—the blocks protected by critical
directives—this is exactly what OpenMP does. From OpenMP’s point of view our

program has two distinct critical sections: the critical section protected by the atomic
directive, done sending++, and the “composite” critical section in which we enqueue
and dequeue messages.

Since enforcing mutual exclusion among threads serializes execution, this default
behavior of OpenMP—treating all critical blocks as part of one composite critical
section—can be highly detrimental to our program’s performance. OpenMP does
provide the option of adding a name to a critical directive:

# pragma omp critical(name)

When we do this, two blocks protected with critical directives with different
names can be executed simultaneously. However, the names are set during compi-
lation, and we want a different critical section for each thread’s queue. Therefore, we
need to set the names at run-time, and in our setting, when we want to allow simul-
taneous access to the same block of code by threads accessing different queues, the
named critical directive isn’t sufficient.
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The alternative is to use locks.4 A lock consists of a data structure and functions
that allow the programmer to explicitly enforce mutual exclusion in a critical section.
The use of a lock can be roughly described by the following pseudocode:

/∗ Executed by one thread ∗/
Initialize the lock data structure;
. . .
/∗ Executed by multiple threads ∗/
Attempt to lock or set the lock data structure;
Critical section;
Unlock or unset the lock data structure;
. . .
/∗ Executed by one thread ∗/
Destroy the lock data structure;

The lock data structure is shared among the threads that will execute the critical
section. One of the threads (e.g., the master thread) will initialize the lock, and when
all the threads are done using the lock, one of the threads should destroy it.

Before a thread enters the critical section, it attempts to set or lock the lock data
structure by calling the lock function. If no other thread is executing code in the
critical section, it obtains the lock and proceeds into the critical section past the call
to the lock function. When the thread finishes the code in the critical section, it calls
an unlock function, which relinquishes or unsets the lock and allows another thread
to obtain the lock.

While a thread owns the lock, no other thread can enter the critical section. If
another thread attempts to enter the critical section, it will block when it calls the
lock function. If multiple threads are blocked in a call to the lock function, then when
the thread in the critical section relinquishes the lock, one of the blocked threads
returns from the call to the lock, and the others remain blocked.

OpenMP has two types of locks: simple locks and nested locks. A simple lock
can only be set once before it is unset, while a nested lock can be set multiple times by
the same thread before it is unset. The type of an OpenMP simple lock is omp lock t,
and the simple lock functions that we’ll be using are

void omp init lock(omp lock t∗ lock p /∗ out ∗/);
void omp set lock(omp lock t∗ lock p /∗ in/out ∗/);
void omp unset lock(omp lock t∗ lock p /∗ in/out ∗/);
void omp destroy lock(omp lock t∗ lock p /∗ in/out ∗/);

The type and the functions are specified in omp.h. The first function initializes the
lock so that it’s unlocked, that is, no thread owns the lock. The second function
attempts to set the lock. If it succeeds, the calling thread proceeds; if it fails, the
calling thread blocks until the lock becomes available. The third function unsets the

4If you’ve studied the Pthreads chapter, you’ve already learned about locks, and you can skip ahead to
the syntax for OpenMP locks.
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lock so another thread can obtain it. The fourth function makes the lock uninitial-
ized. We’ll only use simple locks. For information about nested locks, see [8, 10],
or [42].

5.8.9 Using locks in the message-passing program
In our earlier discussion of the limitations of the critical directive, we saw that in
the message-passing program, we wanted to insure mutual exclusion in each individ-
ual message queue, not in a particular block of source code. Locks allow us to do
this. If we include a data member with type omp lock t in our queue struct, we can
simply call omp set lock each time we want to insure exclusive access to a message
queue. So the code

# pragma omp critical
/∗ q p = msg queues[dest] ∗/
Enqueue(q p, my rank, mesg);

can be replaced with

/∗ q p = msg queues[dest] ∗/
omp set lock(&q p−>lock);
Enqueue(q p, my rank, mesg);
omp unset lock(&q p−>lock);

Similarly, the code

# pragma omp critical
/∗ q p = msg queues[my rank] ∗/
Dequeue(q p, &src, &mesg);

can be replaced with

/∗ q p = msg queues[my rank] ∗/
omp set lock(&q p−>lock);
Dequeue(q p, &src, &mesg);
omp unset lock(&q p−>lock);

Now when a thread tries to send or receive a message, it can only be blocked by a
thread attempting to access the same message queue, since different message queues
have different locks. In our original implementation, only one thread could send at a
time, regardless of the destination.

Note that it would also be possible to put the calls to the lock functions in the
queue functions Enqueue and Dequeue. However, in order to preserve the perfor-
mance of Dequeue, we would also need to move the code that determines the size of
the queue (enqueued – dequeued) to Dequeue. Without it, the Dequeue function will
lock the queue every time it is called by Try receive. In the interest of preserving
the structure of the code we’ve already written, we’ll leave the calls to omp set lock
and omp unset lock in the Send and Try receive functions.

Since we’re now including the lock associated with a queue in the queue struct,
we can add initialization of the lock to the function that initializes an empty queue.
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Destruction of the lock can be done by the thread that owns the queue before it frees
the queue.

5.8.10 critical directives, atomic directives, or locks?
Now that we have three mechanisms for enforcing mutual exclusion in a critical
section, it’s natural to wonder when one method is preferable to another. In gen-
eral, the atomic directive has the potential to be the fastest method of obtaining
mutual exclusion. Thus, if your critical section consists of an assignment statement
having the required form, it will probably perform at least as well with the atomic
directive as the other methods. However, the OpenMP specification [42] allows the
atomic directive to enforce mutual exclusion across all atomic directives in the
program—this is the way the unnamed critical directive behaves. If this might be
a problem—for example, you have multiple different critical sections protected by
atomic directives—you should use named critical directives or locks. For exam-
ple, suppose we have a program in which it’s possible that one thread will execute
the code on the left while another executes the code on the right.

# pragma omp atomic # pragma omp atomic
x++; y++;

Even if x and y are unrelated memory locations, it’s possible that if one thread
is executing x++, then no thread can simultaneously execute y++. It’s important to
note that the standard doesn’t require this behavior. If two statements are protected
by atomic directives and the two statements modify different variables, then there
are implementations that treat the two statements as different critical sections. See
Exercise 5.10. On the other hand, different statements that modify the same vari-
able will be treated as if they belong to the same critical section, regardless of the
implementation.

We’ve already seen some limitations to the use of critical directives. However,
both named and unnamed critical directives are very easy to use. Furthermore,
in the implementations of OpenMP that we’ve used there doesn’t seem to be a very
large difference between the performance of critical sections protected by a critical
directive, and critical sections protected by locks, so if you can’t use an atomic
directive, but you can use a critical directive, you probably should. Thus, the use of
locks should probably be reserved for situations in which mutual exclusion is needed
for a data structure rather than a block of code.

5.8.11 Some caveats
You should exercise caution when you’re using the mutual exclusion techniques
we’ve discussed. They can definitely cause serious programming problems. Here are
a few things to be aware of:

1. You shouldn’t mix the different types of mutual exclusion for a single critical
section. For example, suppose a program contains the following two segments.

# pragma omp atomic # pragma omp critical
x += f(y); x = g(x);
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The update to x on the right doesn’t have the form required by the atomic direc-
tive, so the programmer used a critical directive. However, the critical
directive won’t exclude the action executed by the atomic block, and it’s pos-
sible that the results will be incorrect. The programmer needs to either rewrite the
function g so that its use can have the form required by the atomic directive, or
she needs to protect both blocks with a critical directive.

2. There is no guarantee of fairness in mutual exclusion constructs. This means that
it’s possible that a thread can be blocked forever in waiting for access to a critical
section. For example, in the code

while(1) {
. . .

# pragma omp critical
x = g(my rank);
. . .

}

it’s possible that, for example, thread 1 can block forever waiting to execute
x = g(my rank), while the other threads repeatedly execute the assignment. Of
course, this wouldn’t be an issue if the loop terminated. Also note that many
implementations give threads access to the critical section in the order in which
they reach it, and for these implementations, this won’t be an issue.

3. It can be dangerous to “nest” mutual exclusion constructs. As an example,
suppose a program contains the following two segments.

# pragma omp critical
y = f(x);
. . .
double f(double x) {

# pragma omp critical
z = g(x); /∗ z is shared ∗/
. . .

}

This is guaranteed to deadlock. When a thread attempts to enter the second crit-
ical section, it will block forever. If thread u is executing code in the first critical
block, no thread can execute code in the second block. In particular, thread u can’t
execute this code. However, if thread u is blocked waiting to enter the second
critical block, then it will never leave the first, and it will stay blocked forever.

In this example, we can solve the problem by using named critical sections.
That is, we could rewrite the code as

# pragma omp critical(one)
y = f(x);
. . .
double f(double x) {

# pragma omp critical(two)
z = g(x); /∗ z is global ∗/
. . .

}
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However, it’s not difficult to come up with examples when naming won’t help.
For example, if a program has two named critical sections—say one and two—
and threads can attempt to enter the critical sections in different orders, then
deadlock can occur. For example, suppose thread u enters one at the same time
that thread v enters two and u then attempts to enter two while v attempts to
enter one:

Time Thread u Thread v

0 Enter crit. sect. one Enter crit. sect. two
1 Attempt to enter two Attempt to enter one
2 Block Block

Then both u and v will block forever waiting to enter the critical sections. So
it’s not enough to just use different names for the critical sections—the program-
mer must insure that different critical sections are always entered in the same
order.

5.9 CACHES, CACHE COHERENCE, AND FALSE SHARING5

Recall that for a number of years now, processors have been able to execute opera-
tions much faster than they can access data in main memory, so if a processor must
read data from main memory for each operation, it will spend most of its time simply
waiting for the data from memory to arrive. Also recall that in order to address this
problem, chip designers have added blocks of relatively fast memory to processors.
This faster memory is called cache memory.

The design of cache memory takes into consideration the principles of temporal
and spatial locality: if a processor accesses main memory location x at time t, then it
is likely that at times close to t, it will access main memory locations close to x. Thus,
if a processor needs to access main memory location x, rather than transferring only
the contents of x to/from main memory, a block of memory containing x is tranferred
from/to the processor’s cache. Such a block of memory is called a cache line or cache
block.

We’ve already seen in Section 2.3.4 that the use of cache memory can have a huge
impact on shared memory. Let’s recall why. First, consider the following situation.
Suppose x is a shared variable with the value 5, and both thread 0 and thread 1 read x
from memory into their (separate) caches, because both want to execute the statement

my y = x;

5This material is also covered in Chapter 4. So if you’ve already read that chapter, you may want to
just skim this section.
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Here, my y is a private variable defined by both threads. Now suppose thread 0
executes the statement

x++;

Finally, suppose that thread 1 now executes

my z = x;

where my z is another private variable.
What’s the value in my z? Is it 5? Or is it 6? The problem is that there are

(at least) three copies of x: the one in main memory, the one in thread 0’s cache,
and the one in thread 1’s cache. When thread 0 executed x++, what happened to the
values in main memory and thread 1’s cache? This is the cache coherence prob-
lem, which we discussed in Chapter 2. We saw there that most systems insist that the
caches be made aware that changes have been made to data they are caching. The line
in the cache of thread 1 would have been marked invalid when thread 0 executed x++,
and before assigning my z = x, the core running thread 1 would see that it’s value of
x was out of date. Thus, the core running thread 0 would have to update the copy
of x in main memory (either now or earlier), and the core running thread 1 would
get the line with the updated value of x from main memory. For further details, see
Chapter 2.

The use of cache coherence can have a dramatic effect on the performance of
shared-memory systems. To illustrate this, let’s take a look at matrix-vector multipli-
cation. Recall that if A= (aij) is an m× n matrix and x is a vector with n components,
then their product y= Ax is a vector with m components, and its ith component yi is
found by forming the dot product of the ith row of A with x:

yi = ai0x0+ ai1x1+ ·· ·+ ai,n−1xn−1.

See Figure 5.5.
So if we store A as a two-dimensional array and x and y as one-dimensional arrays,

we can implement serial matrix-vector multiplication with the following code:

for (i = 0; i < m; i++) {
y[i] = 0.0;

a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1
...

...
...

ai0 ai1 · · · ai,n−1

...
...

...
am−1,0 am−1,1 · · · am−1,n−1

x0

x1

...

xn−1

=

y0

y1
...

yi = ai0x0+ ai1x1+ ·· ·ai,n−1xn−1

...
ym−1

FIGURE 5.5

Matrix-vector multiplication
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for (j = 0; j < n; j++)
y[i] += A[i][j]∗x[j];

}

There are no loop-carried dependences in the outer loop, since A and x are never
updated and iteration i only updates y[i]. Thus, we can parallelize this by dividing
the iterations in the outer loop among the threads:

1 # pragma omp parallel for num threads(thread count) \

2 default(none) private(i, j) shared(A, x, y, m, n)
3 for (i = 0; i < m; i++) {
4 y[i] = 0.0;
5 for (j = 0; j < n; j++)
6 y[i] += A[i][j]∗x[j];
7 }

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads, t:

E =
S

t
=

(
Tserial

Tparallel

)
t

=
Tserial

t×Tparallel
.

Since S ≤ t, E ≤ 1. Table 5.4 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000. An analysis that only considers arithmetic operations would predict that
a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. The 8,000,000× 8 system requires
about 22% more time than the 8000× 8000 system, and the 8× 8,000,000 system
requires about 26% more time than the 8000× 8000 system. Both of these differences
are at least partially attributable to cache performance.

Recall that a write-miss occurs when a core tries to update a variable that’s not
in cache, and it has to access main memory. A cache profiler (such as Valgrind [49])
shows that when the program is run with the 8,000,000× 8 input, it has far more

Table 5.4 Run-Times and Efficiencies of Matrix-Vector
Multiplication (times in seconds)

Matrix Dimension

8,000,000×8 8000×8000 8×8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.322 1.000 0.264 1.000 0.333 1.000
2 0.219 0.735 0.189 0.698 0.300 0.555
4 0.141 0.571 0.119 0.555 0.303 0.275



254 CHAPTER 5 Shared-Memory Programming with OpenMP

cache write-misses than either of the other inputs. The bulk of these occur in Line 4.
Since the number of elements in the vector y is far greater in this case (8,000,000
vs. 8000 or 8), and each element must be initialized, it’s not surprising that this line
slows down the execution of the program with the 8,000,000× 8 input.

Also recall that a read-miss occurs when a core tries to read a variable that’s not
in cache, and it has to access main memory. A cache profiler shows that when the
program is run with the 8× 8,000,000 input, it has far more cache read-misses than
either of the other inputs. These occur in Line 6, and a careful study of this program
(see Exercise 5.12) shows that the main source of the differences is due to the reads
of x. Once again, this isn’t surprising, since for this input, x has 8,000,000 elements,
versus only 8000 or 8 for the other inputs.

It should be noted that there may be other factors that affect the relative perfor-
mance of the single-threaded program with differing inputs. For example, we haven’t
taken into consideration whether virtual memory (see Section 2.2.4) has affected the
performance of the program with the different inputs. How frequently does the CPU
need to access the page table in main memory?

Of more interest to us, though, are the differences in efficiency as the num-
ber of threads is increased. The two-thread efficiency of the program with the
8× 8,000,000 input is more than 20% less than the efficiency of the program with the
8,000,000× 8 and the 8000× 8000 inputs. The four-thread efficiency of the program
with the 8× 8,000,000 input is more than 50% less than the program’s efficiency
with the 8,000,000× 8 and the 8000× 8000 inputs. Why, then, is the multithreaded
performance of the program so much worse with the 8× 8,000,000 input?

In this case, once again, the answer has to do with cache. Let’s take a look at
the program when we run it with four threads. With the 8,000,000× 8 input, y has
8,000,000 components, so each thread is assigned 2,000,000 components. With the
8000× 8000 input, each thread is assigned 2000 components of y, and with the 8×
8,000,000 input, each thread is assigned two components. On the system we used, a
cache line is 64 bytes. Since the type of y is double, and a double is 8 bytes, a single
cache line will store eight doubles.

Cache coherence is enforced at the “cache-line level.” That is, each time any value
in a cache line is written, if the line is also stored in another core’s cache, the entire
line will be invalidated—not just the value that was written. The system we’re using
has two dual-core processors and each processor has its own cache. Suppose for the
moment that threads 0 and 1 are assigned to one of the processors and threads 2 and
3 are assigned to the other. Also suppose that for the 8× 8,000,000 problem all of y
is stored in a single cache line. Then every write to some element of y will invalidate
the line in the other processor’s cache. For example, each time thread 0 updates y[0]
in the statement

y[i] += A[i][j]∗x[j];

if thread 2 or 3 is executing this code, it will have to reload y. Each thread will
update each of its components 8,000,000 times. We see that with this assignment
of threads to processors and components of y to cache lines, all the threads will
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have to reload y many times. This is going to happen in spite of the fact that
only one thread accesses any one component of y—for example, only thread 0
accesses y[0].

Each thread will update its assigned components of y a total of 16,000,000 times.
It appears that many, if not most, of these updates are forcing the threads to access
main memory. This is called false sharing. Suppose two threads with separate caches
access different variables that belong to the same cache line. Further suppose at least
one of the threads updates its variable. Even though neither thread has written to a
shared variable, the cache controller invalidates the entire cache line and forces the
other threads to get the values of the variables from main memory. The threads aren’t
sharing anything (except a cache line), but the behavior of the threads with respect to
memory access is the same as if they were sharing a variable. Hence the name false
sharing.

Why is false sharing not a problem with the other inputs? Let’s look at what
happens with the 8000× 8000 input. Suppose thread 2 is assigned to one of the pro-
cessors and thread 3 is assigned to another. (We don’t actually know which threads
are assigned to which processors, but it turns out—see Exercise 5.13—that it doesn’t
matter.) Thread 2 is responsible for computing

y[4000], y[4001], . . . , y[5999],

and thread 3 is responsible for computing

y[6000], y[6001], . . . , y[7999]

If a cache line contains eight consecutive doubles, the only possibility for false shar-
ing is on the interface between their assigned elements. If, for example, a single cache
line contains

y[5996], y[5997], y[5998], y[5999], y[6000], y[6001], y[6002], y[6003],

then it’s conceivable that there might be false sharing of this cache line. However,
thread 2 will access

y[5996], y[5997], y[5998], y[5999]

at the end of its iterations of the for i loop, while thread 3 will access

y[6000], y[6001], y[6002], y[6003]

at the beginning of its iterations. So it’s very likely that when thread 2 accesses, say,
y[5996], thread 3 will be long done with all four of

y[6000], y[6001], y[6002], y[6003].

Similarly, when thread 3 accesses, say, y[6003], it’s very likely that thread 2 won’t
be anywhere near starting to access

y[5996], y[5997], y[5998], y[5999].
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It’s therefore unlikely that false sharing of the elements of y will be a significant
problem with the 8000× 8000 input. Similar reasoning suggests that false sharing of
y is unlikely to be a problem with the 8,000,000× 8 input. Also note that we don’t
need to worry about false sharing of A or x, since their values are never updated by
the matrix-vector multiplication code.

This brings up the question of how we might avoid false sharing in our matrix-
vector multiplication program. One possible solution is to “pad” the y vector with
dummy elements in order to insure that any update by one thread won’t affect another
thread’s cache line. Another alternative is to have each thread use its own private stor-
age during the multiplication loop, and then update the shared storage when they’re
done (see Exercise 5.15).

5.10 THREAD-SAFETY6

Let’s look at another potential problem that occurs in shared-memory programming:
thread-safety. A block of code is thread-safe if it can be simultaneously executed by
multiple threads without causing problems.

As an example, suppose we want to use multiple threads to “tokenize” a file.
Let’s suppose that the file consists of ordinary English text, and that the tokens are
just contiguous sequences of characters separated from the rest of the text by white
space—spaces, tabs, or newlines. A simple approach to this problem is to divide the
input file into lines of text and assign the lines to the threads in a round-robin fashion:
the first line goes to thread 0, the second goes to thread 1, . . . , the tth goes to thread
t, the t+ 1st goes to thread 0, and so on.

We’ll read the text into an array of strings, with one line of text per string. Then
we can use a parallel for directive with a schedule(static,1) clause to divide
the lines among the threads.

One way to tokenize a line is to use the strtok function in string.h. It has the
following prototype:

char∗ strtok(
char∗ string /∗ in/out ∗/,
const char∗ separators /∗ in ∗/);

Its usage is a little unusual: the first time it’s called, the string argument should
be the text to be tokenized, so in our example it should be the line of input. For
subsequent calls, the first argument should be NULL. The idea is that in the first call,
strtok caches a pointer to string, and for subsequent calls it returns successive
tokens taken from the cached copy. The characters that delimit tokens should be
passed in separators, so we should pass in the string " \t\n" as the separators
argument.

6This material is also covered in Chapter 4, so if you’ve already read that chapter, you may want to just
skim this section.
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1 void Tokenize(
2 char∗ lines[] /∗ in/out ∗/,
3 int line count /∗ in ∗/,
4 int thread count /∗ in ∗/) {
5 int my rank, i, j;
6 char ∗my token;
7
8 # pragma omp parallel num threads(thread count) \
9 default(none) private(my rank, i, j, my token) \

10 shared(lines, line count)
11 {

12 my rank = omp get thread num();
13 # pragma omp for schedule(static, 1)
14 for (i = 0; i < line count; i++) {
15 printf("Thread %d > line %d = %s", my rank, i,

lines[i]);
16 j = 0;
17 my token = strtok(lines[i], " \t\n");
18 while ( my token != NULL ) {
19 printf("Thread %d > token %d = %s\n", my rank, j,

my token);
20 my token = strtok(NULL, " \t\n");
21 j++;
22 }

23 } /∗ for i ∗/
24 } /∗ omp parallel ∗/
25
26 } /∗ Tokenize ∗/

Program 5.6: A first attempt at a multi threaded tokenizer

Given these assumptions, we can write the Tokenize function shown in
Program 5.6. The main function has initialized the array lines so that it contains the
input text, and line count is the number of strings stored in lines. Although for
our purposes, we only need the lines argument to be an input argument, the strtok
function modifies its input. Thus, when Tokenize returns, lines will be modified.
When we run the program with a single thread, it correctly tokenizes the input stream.
The first time we run it with two threads and the input

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

the output is also correct. However, the second time we run it with this input, we get
the following output.

Thread 0 > line 0 = Pease porridge hot.
Thread 1 > line 1 = Pease porridge cold.
Thread 0 > token 0 = Pease
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Thread 1 > token 0 = Pease
Thread 0 > token 1 = porridge
Thread 1 > token 1 = cold.
Thread 0 > line 2 = Pease porridge in the pot
Thread 1 > line 3 = Nine days old.
Thread 0 > token 0 = Pease
Thread 1 > token 0 = Nine
Thread 0 > token 1 = days
Thread 1 > token 1 = old.

What happened? Recall that strtok caches the input line. It does this by declaring
a variable to have static storage class. This causes the value stored in this variable
to persist from one call to the next. Unfortunately for us, this cached string is shared,
not private. Thus, it appears that thread 1’s call to strtok with the second line has
apparently overwritten the contents of thread 0’s call with the first line. Even worse,
thread 0 has found a token (“days”) that should be in thread 1’s output.

The strtok function is therefore not thread-safe: if multiple threads call it
simultaneously, the output it produces may not be correct. Regrettably, it’s not
uncommon for C library functions to fail to be thread-safe. For example, neither
the random number generator random in stdlib.h nor the time conversion func-
tion localtime in time.h is thread-safe. In some cases, the C standard specifies an
alternate, thread-safe, version of a function. In fact, there is a thread-safe version of
strtok:

char∗ strtok r(
char∗ string /∗ in/out ∗/,
const char∗ separators /∗ in ∗/,
char∗∗ saveptr p /∗ in/out ∗/);

The “ r” is supposed to suggest that the function is re-entrant, which is sometimes
used as a synonym for thread-safe. The first two arguments have the same purpose as
the arguments to strtok. The saveptr p argument is used by strtok r for keeping
track of where the function is in the input string; it serves the purpose of the cached
pointer in strtok. We can correct our original Tokenize function by replacing the
calls to strtok with calls to strtok r. We simply need to declare a char* variable
to pass in for the third argument, and replace the calls in Line 17 and Line 20 with
the calls

my token = strtok r(lines[i], " \t\n", &saveptr);
. . .
my token = strtok r(NULL, " \t\n", &saveptr);

respectively.

5.10.1 Incorrect programs can produce correct output
Notice that our original version of the tokenizer program shows an especially insidi-
ous form of program error: The first time we ran it with two threads, the program
produced correct output. It wasn’t until a later run that we saw an error. This,
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unfortunately, is not a rare occurrence in parallel programs. It’s especially common
in shared-memory programs. Since, for the most part, the threads are running inde-
pendently of each other, as we noted back at the beginning of the chapter, the exact
sequence of statements executed is nondeterministic. For example, we can’t say when
thread 1 will first call strtok. If its first call takes place after thread 0 has tokenized
its first line, then the tokens identified for the first line should be correct. However, if
thread 1 calls strtok before thread 0 has finished tokenizing its first line, it’s entirely
possible that thread 0 may not identify all the tokens in the first line, so it’s especially
important in developing shared-memory programs to resist the temptation to assume
that since a program produces correct output, it must be correct. We always need to
be wary of race conditions.

5.11 SUMMARY
OpenMP is a standard for programming shared-memory systems. It uses both special
functions and preprocessor directives called pragmas, so unlike Pthreads and MPI,
OpenMP requires compiler support. One of the most important features of OpenMP
is that it was designed so that developers could incrementally parallelize existing
serial programs, rather than having to write parallel programs from scratch.

OpenMP programs start multiple threads rather than multiple processes. Threads
can be much lighter weight than processes; they can share almost all the resources of
a process, except each thread must have its own stack and program counter.

To get OpenMP’s function prototypes and macros, we include the omp.h header in
OpenMP programs. There are several OpenMP directives that start multiple threads;
the most general is the parallel directive:

# pragma omp parallel
structured block

This directive tells the run-time system to execute the following structured block of
code in parallel. It may fork or start several threads to execute the structured block.
A structured block is a block of code with a single entry point and a single exit
point, although calls to the C library function exit are allowed within a structured
block. The number of threads started is system dependent, but most systems will
start one thread for each available core. The collection of threads executing block
of code is called a team. One of the threads in the team is the thread that was
executing the code before the parallel directive. This thread is called the master.
The additional threads started by the parallel directive are called slaves. When all
of the threads are finished, the slave threads are terminated or joined and the master
thread continues executing the code beyond the structured block.

Many OpenMP directives can be modified by clauses. We made frequent use of
the num threads clause. When we use an OpenMP directive that starts a team of
threads, we can modify it with the num threads clause so that the directive will start
the number of threads we desire.
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When OpenMP starts a team of threads, each of the threads is assigned a
rank or an id in the range 0,1, . . . ,thread count− 1. The OpenMP library func-
tion omp get thread num then returns the calling thread’s rank. The function
omp get num threads returns the number of threads in the current team.

A major problem in the development of shared-memory programs is the possi-
bility of race conditions. A race condition occurs when multiple threads attempt to
access a shared resource, at least one of the accesses is an update, and the accesses
can result in an error. Code that is executed by multiple threads that update a shared
resource that can only be updated by one thread at a time is called a critical section.
Thus, if multiple threads try to update a shared variable, the program has a race con-
dition and the code that updates the variable is a critical section. OpenMP provides
several mechanisms for insuring mutual exclusion in critical sections. We examined
four of them:

1. Critical directives insure that only one thread at a time can execute the struc-
tured block. If multiple threads try to execute the code in the critical section, all
but one of them will block before the critical section. As threads finish the critical
section, other threads will be unblocked and enter the code.

2. Named critical directives can be used in programs having different critical
sections that can be executed concurrently. Multiple threads trying to exe-
cute code in critical section(s) with the same name will be handled in the
same way as multiple threads trying to execute an unnamed critical section.
However, threads entering critical sections with different names can execute
concurrently.

3. An atomic directive can only be used when the critical section has the form
x <op>= <expression>, x++, ++x, x−−, or −−x. It’s designed to exploit special
hardware instructions, so it can be much faster than an ordinary critical section.

4. Simple locks are the most general form of mutual exclusion. They use function
calls to restrict access to a critical section:

omp set lock(&lock);
critical section
omp unset lock(&lock);

When multiple threads call omp set lock, only one of them will proceed to the
critical section. The others will block until the first thread calls omp unset lock.
Then one of the blocked threads can proceed.

All of the mutual exclusion mechanisms can cause serious program problems such as
deadlock, so they need to be used with great care.

A for directive can be used to partition the iterations in a for loop among the
threads. This directive doesn’t start a team of threads, it divides the iterations in a
for loop among the threads in an existing team. If we want to also start a team of
threads, we can use the parallel for directive. There are a number of restrictions
on the form of a for loop that can be parallelized; basically, the run-time system must
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be able to determine the total number of iterations through the loop body before the
loop begins execution. For details, see Program 5.3.

It’s not enough, however, to insure that our for loop has one of the canonical
forms. It must also not have any loop-carried dependences. A loop-carried depen-
dence occurs when a memory location is read or written in one iteration and written
in another iteration. OpenMP won’t detect loop-carried dependences; it’s up to us,
the programmers, to detect them and eliminate them. It may, however, be impossible
to eliminate them, in which case, the loop isn’t a candidate for parallelization.

By default, most systems use a block partitioning of the iterations in a par-
allelized for loop. If there are n iterations, this means that roughly the first
n/thread count are assigned to thread 0, the next n/thread count are assigned
to thread 1, and so on. However, there are a variety of scheduling options provided
by OpenMP. The schedule clause has the form

schedule(<type> [,<chunksize>])

The type can be static, dynamic, guided, auto, or runtime. In a static sched-
ule, the iterations can be assigned to the threads before the loop starts execution.
In dynamic and guided schedules the iterations are assigned on the fly. When a
thread finishes a chunk of iterations—a contiguous block of iterations—it requests
another chunk. If auto is specified, the schedule is determined by the compiler or
run-time system, and if runtime is specified, the schedule is determined at run-time
by examining the environment variable OMP SCHEDULE.

Only static, dynamic, and guided schedules can have a chunksize. In a
static schedule, the chunks of chunksize iterations are assigned in round robin
fashion to the threads. In a dynamic schedule, each thread is assigned chunksize
iterations, and when a thread completes its chunk, it requests another chunk. In a
guided schedule, the size of the chunks decreases as the iteration proceeds.

In OpenMP the scope of a variable is the collection of threads to which the
variable is accessible. Typically, any variable that was defined before the OpenMP
directive has shared scope within the construct. That is, all the threads have access
to it. The principal exception to this is that the loop variable in a for or parallel for
construct is private, that is, each thread has its own copy of the variable. Variables
that are defined within an OpenMP construct have private scope, since they will be
allocated from the executing thread’s stack.

As a rule of thumb, it’s a good idea to explicitly assign the scope of variables. This
can be done by modifying a parallel or parallel for directive with the scoping
clause:

default(none)

This tells the system that the scope of every variable that’s used in the OpenMP
construct must be explicitly specified. Most of the time this can be done with private
or shared clauses.
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The only exceptions we encountered were reduction variables. A reduction
operator is a binary operation (such as addition or multiplication) and a reduction
is a computation that repeatedly applies the same reduction operator to a sequence of
operands in order to get a single result. Furthermore, all of the intermediate results
of the operation should be stored in the same variable: the reduction variable. For
example, if A is an array with n elements, then the code

int sum = 0;
for (i = 0; i < n; i++)

sum += A[i];

is a reduction. The reduction operator is addition and the reduction variable is sum.
If we try to parallelize this loop, the reduction variable should have properties of
both private and shared variables. Initially we would like each thread to add its array
elements into its own private sum, but when the threads are done, we want the private
sum’s combined into a single, shared sum. OpenMP therefore provides the reduction
clause for identifying reduction variables and operators.

A barrier directive will cause the threads in a team to block until all the threads
have reached the directive. We’ve seen that the parallel, parallel for, and for
directives have implicit barriers at the end of the structured block.

We recalled that modern microprocessor architectures use caches to reduce mem-
ory access times, so typical architectures have special hardware to insure that the
caches on the different chips are coherent. Since the unit of cache coherence, a cache
line or cache block, is usually larger than a single word of memory, this can have the
unfortunate side effect that two threads may be accessing different memory loca-
tions, but when the two locations belong to the same cache line, the cache-coherence
hardware acts as if the threads were accessing the same memory location—if one of
the threads updates its memory location, and then the other thread tries to read its
memory location, it will have to retrieve the value from main memory. That is, the
hardware is forcing the thread to act as if it were actually sharing the memory loca-
tion. Hence, this is called false sharing, and it can seriously degrade the performance
of a shared-memory program.

Some C functions cache data between calls by declaring variables to be static.
This can cause errors when multiple threads call the function; since static storage
is shared among the threads, one thread can overwrite another thread’s data. Such a
function is not thread-safe, and, unfortunately, there are several such functions in the
C library. Sometimes, however, the library has a thread-safe variant of a function that
isn’t thread-safe.

In one of our programs we saw a particularly insidious problem: when we ran the
program with multiple threads and a fixed set of input, it sometimes produced correct
output, even though it had an error. Producing correct output during testing doesn’t
guarantee that the program is in fact correct. It’s up to us to identify possible race
condtions.
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5.12 EXERCISES

5.1. If it’s defined, the OPENMP macro is a decimal int. Write a program that prints
its value. What is the significance of the value?

5.2. Download omp trap 1.c from the book’s website, and delete the critical
directive. Now compile and run the program with more and more threads and
larger and larger values of n. How many threads and how many trapezoids
does it take before the result is incorrect?

5.3. Modify omp trap 1.c so that
a. it uses the first block of code on page 222, and
b. the time used by the parallel block is timed using the OpenMP function

omp get wtime(). The syntax is

double omp get wtime(void)

It returns the number of seconds that have passed since some time in
the past. For details on taking timings, see Section 2.6.4. Also recall that
OpenMP has a barrier directive:

# pragma omp barrier

Now find a system with at least two cores and time the program with
c. one thread and a large value of n, and
d. two threads and the same value of n.
What happens? Download omp trap 2.c from the book’s website. How does
its performance compare? Explain your answers.

5.4. Recall that OpenMP creates private variables for reduction variables, and these
private variables are initialized to the identity value for the reduction operator.
For example, if the operator is addition, the private variables are initialized to
0, while if the operator is multiplication, the private variables are initialized to
1. What are the identity values for the operators &&, ||, &, |, ˆ?

5.5. Suppose that on the amazing Bleeblon computer, variables with type float
can store three decimal digits. Also suppose that the Bleeblon’s floating point
registers can store four decimal digits, and that after any floating point oper-
ation, the result is rounded to three decimal digits before being stored. Now
suppose a C program declares an array a as follows:

float a[] = {4.0, 3.0, 3.0, 1000.0};

a. What is the output of the following block of code if it’s run on the
Bleeblon?

int i;
float sum = 0.0;
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for (i = 0; i < 4; i++)
sum += a[i];

printf("sum = %4.1f\n", sum);

b. Now consider the following code:

int i;
float sum = 0.0;

# pragma omp parallel for num threads(2) \
reduction(+:sum)

for (i = 0; i < 4; i++)
sum += a[i];

printf("sum = %4.1f\n", sum);

Suppose that the run-time system assigns iterations i = 0, 1 to thread 0
and i = 2, 3 to thread 1. What is the output of this code on the Bleeblon?

5.6. Write an OpenMP program that determines the default scheduling of paral-
lel for loops. Its input should be the number of iterations, and its output
should be which iterations of a parallelized for loop are executed by which
thread. For example, if there are two threads and four iterations, the output
might be:

Thread 0: Iterations 0 −− 1
Thread 1: Iterations 2 −− 3

5.7. In our first attempt to parallelize the program for estimating π , our program
was incorrect. In fact, we used the result of the program when it was run with
one thread as evidence that the program run with two threads was incorrect.
Explain why we could “trust” the result of the program when it was run with
one thread.

5.8. Consider the loop

a[0] = 0;
for (i = 1; i < n; i++)

a[i] = a[i−1] + i;

There’s clearly a loop-carried dependence, as the value of a[i] can’t be com-
puted without the value of a[i−1]. Can you see a way to eliminate this
dependence and parallelize the loop?

5.9. Modify the trapezoidal rule program that uses a parallel for directive
(omp trap 3.c) so that the parallel for is modified by a schedule(runtime)
clause. Run the program with various assignments to the environment variable
OMP SCHEDULE and determine which iterations are assigned to which thread.
This can be done by allocating an array iterations of n ints and in the
Trap function assigning omp get thread num() to iterations[i] in the ith
iteration of the for loop. What is the default assignment of iterations on your
system? How are guided schedules determined?
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5.10. Recall that all structured blocks modified by an unnamed critical directive
form a single critical section. What happens if we have a number of atomic
directives in which different variables are being modified? Are they all treated
as a single critical section?

We can write a small program that tries to determine this. The idea is to
have all the threads simultaneously execute something like the following code

int i;
double my sum = 0.0;
for (i = 0; i < n; i++)

# pragma omp atomic
my sum += sin(i);

We can do this by modifying the code by a parallel directive:

# pragma omp parallel num threads(thread count)
{

int i;
double my sum = 0.0;
for (i = 0; i < n; i++)

# pragma omp atomic
my sum += sin(i);

}

Note that since my sum and i are declared in the parallel block, each
thread has its own private copy. Now if we time this code for large n when
thread count= 1 and we also time it when thread count> 1, then as long
as thread count is less than the number of available cores, the run-time for
the single-threaded run should be roughly the same as the time for the mul-
tithreaded run if the different threads’ executions of my sum += sin(i) are
treated as different critical sections. On the other hand, if the different exe-
cutions of my sum += sin(i) are all treated as a single critical section, the
multithreaded run should be much slower than the single-threaded run. Write
an OpenMP program that implements this test. Does your implementation of
OpenMP allow simultaneous execution of updates to different variables when
the updates are protected by atomic directives?

5.11. Recall that in C, a function that takes a two-dimensional array argument must
specify the number of columns in the argument list, so it is quite common
for C programmers to only use one-dimensional arrays, and to write explicit
code for converting pairs of subscripts into a single dimension. Modify the
OpenMP matrix-vector multiplication so that it uses a one-dimensional array
for the matrix.

5.12. Download the source file omp mat vect rand split.c from the book’s web-
site. Find a program that does cache profiling (e.g., Valgrind [49]) and compile
the program according to the instructions in the cache profiler documentation.
(For example, with Valgrind you will want a symbol table and full optimiza-
tion. (With gcc use, gcc −g −O2 . . .). Now run the program according to
the instructions in the cache profiler documentation, using input k× (k · 106),
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(k · 103)× (k · 103), and (k · 106)× k. Choose k so large that the number of
level 2 cache misses is of the order 106 for at least one of the input sets
of data.
a. How many level 1 cache write-misses occur with each of the three inputs?
b. How many level 2 cache write-misses occur with each of the three inputs?
c. Where do most of the write-misses occur? For which input data does the

program have the most write-misses? Can you explain why?
d. How many level 1 cache read-misses occur with each of the three inputs?
e. How many level 2 cache read-misses occur with each of the three inputs?
f. Where do most of the read-misses occur? For which input data does the

program have the most read-misses? Can you explain why?
g. Run the program with each of the three inputs, but without using the cache

profiler. With which input is the program the fastest? With which input is
the program the slowest? Can your observations about cache misses help
explain the differences? How?

5.13. Recall the matrix-vector multiplication example with the 8000× 8000 input.
Suppose that thread 0 and thread 2 are assigned to different processors. If
a cache line contains 64 bytes or 8 doubles, is it possible for false sharing
between threads 0 and 2 to occur for any part of the vector y? Why? What
about if thread 0 and thread 3 are assigned to different processors; is it possible
for false sharing to occur between them for any part of y?

5.14. Recall the matrix-vector multiplication example with an 8× 8,000,000
matrix. Suppose that doubles use 8 bytes of memory and that a cache line is 64
bytes. Also suppose that our system consists of two dual-core processors.
a. What is the minimum number of cache lines that are needed to store the

vector y?
b. What is the maximum number of cache lines that are needed to store the

vector y?
c. If the boundaries of cache lines always coincide with the boundaries of

8-byte doubles, in how many different ways can the components of y be
assigned to cache lines?

d. If we only consider which pairs of threads share a processor, in how
many different ways can four threads be assigned to the processors in our
computer? Here, we’re assuming that cores on the same processor share
cache.

e. Is there an assignment of components to cache lines and threads to proces-
sors that will result in no false-sharing in our example? In other words, is it
possible that the threads assigned to one processor will have their compo-
nents of y in one cache line, and the threads assigned to the other processor
will have their components in a different cache line?

f. How many assignments of components to cache lines and threads to
processors are there?

g. Of these assignments, how many will result in no false sharing?
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5.15. a. Modify the matrix-vector multiplication program so that it pads the vector
y when there’s a possibility of false sharing. The padding should be done
so that if the threads execute in lock-step, there’s no possibility that a single
cache line containing an element of y will be shared by two or more threads.
Suppose, for example, that a cache line stores eight doubles and we run the
program with four threads. If we allocate storage for at least 48 doubles in
y, then, on each pass through the for i loop, there’s no possibility that two
threads will simultaneously access the same cache line.

b. Modify the matrix-vector multiplication program so that each thread uses
private storage for its part of y during the for i loop. When a thread is
done computing its part of y, it should copy its private storage into the
shared variable.

c. How does the performance of these two alternatives compare to the original
program. How do they compare to each other?

5.16. Although strtok r is thread-safe, it has the rather unfortunate property that it
gratuitously modifies the input string. Write a tokenizer that is thread-safe and
doesn’t modify the input string.

5.13 PROGRAMMING ASSIGNMENTS

5.1. Use OpenMP to implement the parallel histogram program discussed in
Chapter 2.

5.2. Suppose we toss darts randomly at a square dartboard, whose bullseye is at the
origin, and whose sides are 2 feet in length. Suppose also that there’s a circle
inscribed in the square dartboard. The radius of the circle is 1 foot, and it’s area
is π square feet. If the points that are hit by the darts are uniformly distributed
(and we always hit the square), then the number of darts that hit inside the circle
should approximately satisfy the equation

number in circle

total number of tosses
=
π

4
,

since the ratio of the area of the circle to the area of the square is π/4.
We can use this formula to estimate the value of π with a random number

generator:

number in circle = 0;
for (toss = 0; toss < number of tosses; toss++) {

x = random double between −1 and 1;
y = random double between −1 and 1;
distance squared = x∗x + y∗y;
if (distance squared <= 1) number in circle++;

}

pi estimate = 4∗number in circle/((double) number of tosses);
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This is called a “Monte Carlo” method, since it uses randomness (the dart tosses).
Write an OpenMP program that uses a Monte Carlo method to estimate π .

Read in the total number of tosses before forking any threads. Use a reduction
clause to find the total number of darts hitting inside the circle. Print the result
after joining all the threads. You may want to use long long ints for the num-
ber of hits in the circle and the number of tosses, since both may have to be
very large to get a reasonable estimate of π .

5.3. Count sort is a simple serial sorting algorithm that can be implemented as
follows:

void Count sort(int a[], int n) {
int i, j, count;
int∗ temp = malloc(n∗sizeof(int));

for (i = 0; i < n; i++) {
count = 0;
for (j = 0; j < n; j++)

if (a[j] < a[i])
count++;

else if (a[j] == a[i] && j < i)
count++;

temp[count] = a[i];
}

memcpy(a, temp, n∗sizeof(int));
free(temp);

} /∗ Count sort ∗/

The basic idea is that for each element a[i] in the list a, we count the num-
ber of elements in the list that are less than a[i]. Then we insert a[i] into
a temporary list using the subscript determined by the count. There’s a slight
problem with this approach when the list contains equal elements, since they
could get assigned to the same slot in the temporary list. The code deals with
this by incrementing the count for equal elements on the basis of the subscripts.
If both a[i] == a[j] and j <i, then we count a[j] as being “less than” a[i].

After the algorithm has completed, we overwrite the original array with the
temporary array using the string library function memcpy.
a. If we try to parallelize the for i loop (the outer loop), which variables

should be private and which should be shared?
b. If we parallelize the for i loop using the scoping you specified in the

previous part, are there any loop-carried dependences? Explain your answer.
c. Can we parallelize the call to memcpy? Can we modify the code so that this

part of the function will be parallelizable?
d. Write a C program that includes a parallel implementation of Count sort.
e. How does the performance of your parallelization of Count sort com-

pare to serial Count sort? How does it compare to the serial qsort
library function?
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5.4. Recall that when we solve a large linear system, we often use Gaussian elim-
ination followed by backward substitution. Gaussian elimination converts an
n× n linear system into an upper triangular linear system by using the “row
operations.”. Add a multiple of one row to another row. Swap two rows. Multiply one row by a nonzero constant
An upper triangular system has zeroes below the “diagonal” extending from the
upper left-hand corner to the lower right-hand corner.

For example, the linear system

2x0 − 3x1 = 3
4x0 − 5x1 + x2 = 7
2x0 − x1 − 3x2 = 5

can be reduced to the upper triangular form

2x0 − 3x1 = 3
x1 + x2 = 1
− 5x2 = 0

,

and this system can be easily solved by first finding x2 using the last equation,
then finding x1 using the second equation, and finally finding x0 using the first
equation.

We can devise a couple of serial algorithms for back substitution. The “row-
oriented” version is

for (row = n−1; row >= 0; row−−) {
x[row] = b[row];
for (col = row+1; col < n; col++)

x[row] −= A[row][col]∗x[col];
x[row] /= A[row][row];

}

Here the “right-hand side” of the system is stored in array b, the two-
dimensional array of coefficients is stored in array A, and the solutions are stored
in array x. An alternative is the following “column-oriented” algorithm:

for (row = 0; row < n; row++)
x[row] = b[row];

for (col = n−1; col >= 0; col−−) {
x[col] /= A[col][col];
for (row = 0; row < col; row++)

x[row] −= A[row][col]∗x[col];
}

a. Determine whether the outer loop of the row-oriented algorithm can be
parallelized.
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b. Determine whether the inner loop of the row-oriented algorithm can be
parallelized.

c. Determine whether the (second) outer loop of the column-oriented algorithm
can be parallelized.

d. Determine whether the inner loop of the column-oriented algorithm can be
parallelized.

e. Write one OpenMP program for each of the loops that you determined could
be parallelized. You may find the single directive useful—when a block
of code is being executed in parallel and a sub-block should be executed by
only one thread, the sub-block can be modified by a #pragma omp single
directive. The threads in the executing team will block at the end of the
directive until all of the threads have completed it.

f. Modify your parallel loop with a schedule(runtime) clause and test the
program with various schedules. If your upper triangular system has 10,000
variables, which schedule gives the best performance?

5.5. Use OpenMP to implement a program that does Gaussian elimination. (See the
preceding problem.) You can assume that the input system doesn’t need any
row-swapping.

5.6. Use OpenMP to implement a producer-consumer program in which some of the
threads are producers and others are consumers. The producers read text from
a collection of files, one per producer. They insert lines of text into a single
shared queue. The consumers take the lines of text and tokenize them. Tokens
are “words” separated by white space. When a consumer finds a token, it writes
it to stdout.
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6Parallel Program
Development

In the last three chapters we haven’t just learned about parallel APIs, we’ve also
developed a number of small parallel programs, and each of these programs has
involved the implementation of a parallel algorithm. In this chapter, we’ll look at a
couple of larger examples: solving n-body problems and solving the traveling sales-
person problem. For each problem, we’ll start by looking at a serial solution and
examining modifications to the serial solution. As we apply Foster’s methodology,
we’ll see that there are some striking similarities between developing shared- and
distributed-memory programs. We’ll also see that in parallel programming there are
problems that we need to solve for which there is no serial analog. We’ll see that there
are instances in which, as parallel programmers, we’ll have to start “from scratch.”

6.1 TWO n-BODY SOLVERS
In an n-body problem, we need to find the positions and velocities of a collection of
interacting particles over a period of time. For example, an astrophysicist might want
to know the positions and velocities of a collection of stars, while a chemist might
want to know the positions and velocities of a collection of molecules or atoms. An
n-body solver is a program that finds the solution to an n-body problem by simulating
the behavior of the particles. The input to the problem is the mass, position, and
velocity of each particle at the start of the simulation, and the output is typically the
position and velocity of each particle at a sequence of user-specified times, or simply
the position and velocity of each particle at the end of a user-specified time period.

Let’s first develop a serial n-body solver. Then we’ll try to parallelize it for both
shared- and distributed-memory systems.

6.1.1 The problem
For the sake of explicitness, let’s write an n-body solver that simulates the motions
of planets or stars. We’ll use Newton’s second law of motion and his law of universal
gravitation to determine the positions and velocities. Thus, if particle q has position
sq(t) at time t, and particle k has position sk(t), then the force on particle q exerted by

Copyright c© 2011 Elsevier Inc. All rights reserved.
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particle k is given by

fqk(t)=−
Gmqmk∣∣sq(t)− sk(t)

∣∣3 [sq(t)− sk(t)
]

. (6.1)

Here, G is the gravitational constant (6.673× 10−11m3/(kg · s2)), and mq and mk

are the masses of particles q and k, respectively. Also, the notation
∣∣sq(t)− sk(t)

∣∣
represents the distance from particle k to particle q. Note that in general the positions,
the velocities, the accelerations, and the forces are vectors, so we’re using boldface
to represent these variables. We’ll use an italic font to represent the other, scalar,
variables, such as the time t and the gravitational constant G.

We can use Formula 6.1 to find the total force on any particle by adding the forces
due to all the particles. If our n particles are numbered 0,1,2, . . . ,n− 1, then the total
force on particle q is given by

Fq(t)=
n−1∑
k=0
k 6=q

fqk =−Gmq

n−1∑
k=0
k 6=q

mk∣∣sq(t)− sk(t)
∣∣3 [sq(t)− sk(t)

]
. (6.2)

Recall that the acceleration of an object is given by the second derivative of its posi-
tion and that Newton’s second law of motion states that the force on an object is given
by its mass multiplied by its acceleration, so if the acceleration of particle q is aq(t),
then Fq(t)= mqaq(t)= mqs′′q(t), where s′′q(t) is the second derivative of the position
sq(t). Thus, we can use Formula 6.2 to find the acceleration of particle q:

s′′q(t)=−G
n−1∑
j=0
j6=q

mj∣∣sq(t)− sj(t)
∣∣3 [sq(t)− sj(t)

]
. (6.3)

Thus Newton’s laws give us a system of differential equations—equations involving
derivatives—and our job is to find at each time t of interest the position sq(t) and
velocity vq(t)= s′q(t).

We’ll suppose that we either want to find the positions and velocities at the times

t = 0,1t,21t, . . . ,T1t,

or, more often, simply the positions and velocities at the final time T1t. Here,1t and
T are specified by the user, so the input to the program will be n, the number of parti-
cles, 1t, T , and, for each particle, its mass, its initial position, and its initial velocity.
In a fully general solver, the positions and velocities would be three-dimensional vec-
tors, but in order to keep things simple, we’ll assume that the particles will move in
a plane, and we’ll use two-dimensional vectors instead.

The output of the program will be the positions and velocities of the n particles
at the timesteps 0,1t,21t, . . . , or just the positions and velocities at T1t. To get the
output at only the final time, we can add an input option in which the user specifies
whether she only wants the final positions and velocities.
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6.1.2 Two serial programs
In outline, a serial n-body solver can be based on the following pseudocode:

1 Get input data;
2 for each timestep {
3 if (timestep output) Print positions and velocities of

particles;
4 for each particle q
5 Compute total force on q;
6 for each particle q
7 Compute position and velocity of q;
8 }

9 Print positions and velocities of particles;

We can use our formula for the total force on a particle (Formula 6.2) to refine our
pseudocode for the computation of the forces in Lines 4–5:

for each particle q {
for each particle k != q {

x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
forces[q][X] −= G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
forces[q][Y] −= G∗masses[q]∗masses[k]/dist cubed ∗ y diff;

}

}

Here, we’re assuming that the forces and the positions of the particles are stored as
two-dimensional arrays, forces and pos, respectively. We’re also assuming we’ve
defined constants X = 0 and Y = 1. So the x-component of the force on particle
q is forces[q][X] and the y-component is forces[q][Y]. Similarly, the compo-
nents of the position are pos[q][X] and pos[q][Y]. (We’ll take a closer look at data
structures shortly.)

We can use Newton’s third law of motion, that is, for every action there is an
equal and opposite reaction, to halve the total number of calculations required for the
forces. If the force on particle q due to particle k is fqk, then the force on k due to q is
−fqk. Using this simplification we can modify our code to compute forces, as shown
in Program 6.1. To better understand this pseudocode, imagine the individual forces
as a two-dimensional array:

0 f01 f02 · · · f0,n−1
−f01 0 f12 · · · f1,n−1
−f02 −f12 0 · · · f2,n−1

...
...

...
. . .

...
−f0,n−1 −f1,n−1 −f2,n−1 · · · 0

 .

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q= 0, the body of the loop
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for each particle q
forces[q] = 0;

for each particle q {
for each particle k > q {

x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
force qk[X] = G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
force qk[Y] = G∗masses[q]∗masses[k]/dist cubed ∗ y diff

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] −= force qk[X];
forces[k][Y] −= force qk[Y];

}

}

Program 6.1: A reduced algorithm for computing n-body forces

for each particle q will add the entries in row 0 into forces[0]. It will also add
the kth entry in column 0 into forces[k] for k = 1,2, . . . ,n− 1. In general, the qth
iteration will add the entries to the right of the diagonal (that is, to the right of the 0)
in row q into forces[q], and the entries below the diagonal in column q will be
added into their respective forces, that is, the kth entry will be added in to forces[k].

Note that in using this modified solver, it’s necessary to initialize the forces
array in a separate loop, since the qth iteration of the loop that calculates the forces
will, in general, add the values it computes into forces[k] for k = q+ 1,q+ 2, . . . ,
n− 1, not just forces[q].

In order to distinguish between the two algorithms, we’ll call the n-body solver
with the original force calculation, the basic algorithm, and the solver with the
number of calculations reduced, the reduced algorithm.

The position and the velocity remain to be found. We know that the acceleration
of particle q is given by

aq(t)= s′′q(t)= Fq(t)/mq,

where s′′q(t) is the second derivative of the position sq(t) and Fq(t) is the force on
particle q. We also know that the velocity vq(t) is the first derivative of the position
s′q(t), so we need to integrate the acceleration to get the velocity, and we need to
integrate the velocity to get the position.

We might at first think that we can simply find an antiderivative of the function in
Formula 6.3. However, a second look shows us that this approach has problems: the
right-hand side contains unknown functions sq and sk—not just the variable t—so
we’ll instead use a numerical method for estimating the position and the velocity.
This means that rather than trying to find simple closed formulas, we’ll approximate
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y = g(t0) + g′(t0) (t– t0)
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g(t0) + g′(t0) Δt

FIGURE 6.1

Using the tangent line to approximate a function

the values of the position and velocity at the times of interest. There are many possible
choices for numerical methods, but we’ll use the simplest one: Euler’s method, which
is named after the famous Swiss mathematician Leonhard Euler (1707–1783). In
Euler’s method, we use the tangent line to approximate a function. The basic idea is
that if we know the value of a function g(t0) at time t0 and we also know its derivative
g′(t0) at time t0, then we can approximate its value at time t0+1t by using the tangent
line to the graph of g(t0). See Figure 6.1 for an example. Now if we know a point
(t0,g(t0)) on a line, and we know the slope of the line g′(t0), then an equation for the
line is given by

y= g(t0)+ g′(t0)(t− t0).

Since we’re interested in the time t = t0+1t, we get

g(t+1t)≈ g(t0)+ g′(t0)(t+1t− t)= g(t0)+1tg′(t0).

Note that this formula will work even when g(t) and y are vectors: when this is the
case, g′(t) is also a vector and the formula just adds a vector to a vector multiplied by
a scalar, 1t.

Now we know the value of sq(t) and s′q(t) at time 0, so we can use the tangent line
and our formula for the acceleration to compute sq(1t) and vq(1t):

sq(1t)≈ sq(0)+1t s′q(0)= sq(0)+1t vq(0),

vq(1t)≈ vq(0)+1t v′q(0)= vq(0)+1t aq(0)= vq(0)+1t
1

mq
Fq(0).

When we try to extend this approach to the computation of sq(21t) and s′q(21t), we
see that things are a little bit different, since we don’t know the exact value of sq(1t)
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FIGURE 6.2

Euler’s method

and s′q(1t). However, if our approximations to sq(1t) and s′q(1t) are good, then we
should be able to get a reasonably good approximation to sq(21t) and s′q(21t) using
the same idea. This is what Euler’s method does (see Figure 6.2).

Now we can complete our pseudocode for the two n-body solvers by adding in
the code for computing position and velocity:

pos[q][X] += delta t∗vel[q][X];
pos[q][Y] += delta t∗vel[q][Y];
vel[q][X] += delta t/masses[q]∗forces[q][X];
vel[q][Y] += delta t/masses[q]∗forces[q][Y];

Here, we’re using pos[q], vel[q], and forces[q] to store the position, the velocity,
and the force, respectively, of particle q.

Before moving on to parallelizing our serial program, let’s take a moment to look
at data structures. We’ve been using an array type to store our vectors:

#define DIM 2

typedef double vect t[DIM];

A struct is also an option. However, if we’re using arrays and we decide to change
our program so that it solves three-dimensional problems, in principle, we only need
to change the macro DIM. If we try to do this with structs, we’ll need to rewrite the
code that accesses individual components of the vector.

For each particle, we need to know the values of

. its mass,. its position,



6.1 Two n-Body Solvers 277

. its velocity,. its acceleration, and. the total force acting on it.

Since we’re using Newtonian physics, the mass of each particle is constant, but the
other values will, in general, change as the program proceeds. If we examine our
code, we’ll see that once we’ve computed a new value for one of these variables for
a given timestep, we never need the old value again. For example, we don’t need to
do anything like this

new pos q = f(old pos q);
new vel q = g(old pos q, new pos q);

Also, the acceleration is only used to compute the velocity, and its value can be
computed in one arithmetic operation from the total force, so we only need to use a
local, temporary variable for the acceleration.

For each particle it suffices to store its mass and the current value of its position,
velocity, and force. We could store these four variables as a struct and use an array of
structs to store the data for all the particles. Of course, there’s no reason that all of the
variables associated with a particle need to be grouped together in a struct. We can
split the data into separate arrays in a variety of different ways. We’ve chosen to group
the mass, position, and velocity into a single struct and store the forces in a separate
array. With the forces stored in contiguous memory, we can use a fast function such
as memset to quickly assign zeroes to all of the elements at the beginning of each
iteration:

#include <string.h> /∗ For memset ∗/
. . .
vect t∗ forces = malloc(n∗sizeof(vect t));
. . .
for (step = 1; step <= n steps; step++) {

. . .
/∗ Assign 0 to each element of the forces array ∗/
forces = memset(forces, 0, n∗sizeof(vect t);
for (part = 0; part < n−1; part++)

Compute force(part, forces, . . .)
. . .

}

If the force on each particle were a member of a struct, the force members wouldn’t
occupy contiguous memory in an array of structs, and we’d have to use a relatively
slow for loop to assign zero to each element.

6.1.3 Parallelizing the n-body solvers
Let’s try to apply Foster’s methodology to the n-body solver. Since we initially want
lots of tasks, we can start by making our tasks the computations of the positions, the
velocities, and the total forces at each timestep. In the basic algorithm, the algorithm
in which the total force on each particle is calculated directly from Formula 6.2, the



278 CHAPTER 6 Parallel Program Development
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FIGURE 6.3

Communications among tasks in the basic n-body solver

computation of Fq(t), the total force on particle q at time t, requires the positions
of each of the particles sr(t), for each r. The computation of vq(t+1t) requires the
velocity at the previous timestep, vq(t), and the force, Fq(t), at the previous timestep.
Finally, the computation of sq(t+1t) requires sq(t) and vq(t). The communications
among the tasks can be illustrated as shown in Figure 6.3. The figure makes it clear
that most of the communication among the tasks occurs among the tasks associated
with an individual particle, so if we agglomerate the computations of sq(t),vq(t), and
Fq(t), our intertask communication is greatly simplified (see Figure 6.4). Now the
tasks correspond to the particles and, in the figure, we’ve labeled the communications
with the data that’s being communicated. For example, the arrow from particle q at
timestep t to particle r at timestep t is labeled with sq, the position of particle q.

For the reduced algorithm, the “intra-particle” communications are the same. That
is, to compute sq(t+1t) we’ll need sq(t) and vq(t), and to compute vq(t+1t),
we’ll need vq(t) and Fq(t). Therefore, once again it makes sense to agglomerate the
computations associated with a single particle into a composite task.

sq,vq,Fq

sq

vq

Fq

sr

vr

Fr

t

sr,vr,Fr

srsq

srsq

t + Δt

FIGURE 6.4

Communications among agglomerated tasks in the basic n-body solver
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Communications among agglomerated tasks in the reduced n-body solver (q< r)

Recollect that in the reduced algorithm, we make use of the fact that the force
frq =−fqr. So if q< r, then the communication from task r to task q is the same as in
the basic algorithm—in order to compute Fq(t), task/particle q will need sr(t) from
task/particle r. However, the communication from task q to task r is no longer sq(t),
it’s the force on particle q due to particle r, that is, fqr(t). See Figure 6.5.

The final stage in Foster’s methodology is mapping. If we have n particles and
T timesteps, then there will be nT tasks in both the basic and the reduced algorithm.
Astrophysical n-body problems typically involve thousands or even millions of par-
ticles, so n is likely to be several orders of magnitude greater than the number of
available cores. However, T may also be much larger than the number of available
cores. So, in principle, we have two “dimensions” to work with when we map tasks to
cores. However, if we consider the nature of Euler’s method, we’ll see that attempt-
ing to assign tasks associated with a single particle at different timesteps to different
cores won’t work very well. Before estimating sq(t+1t) and vq(t+1t), Euler’s
method must “know” sq(t), vq(t), and aq(t). Thus, if we assign particle q at time t to
core c0, and we assign particle q at time t+1t to core c1 6= c0, then we’ll have to
communicate sq(t),vq(t), and Fq(t) from c0 to c1. Of course, if particle q at time t and
particle q at time t+1t are mapped to the same core, this communication won’t be
necessary, so once we’ve mapped the task consisting of the calculations for particle q
at the first timestep to core c0, we may as well map the subsequent computations for
particle q to the same cores, since we can’t simultaneously execute the computations
for particle q at two different timesteps. Thus, mapping tasks to cores will, in effect,
be an assignment of particles to cores.

At first glance, it might seem that any assignment of particles to cores that assigns
roughly n/thread count particles to each core will do a good job of balancing
the workload among the cores, and for the basic algorithm this is the case. In the
basic algorithm the work required to compute the position, velocity, and force is
the same for every particle. However, in the reduced algorithm the work required in
the forces computation loop is much greater for lower-numbered iterations than the
work required for higher-numbered iterations. To see this, recall the pseudocode that
computes the total force on particle q in the reduced algorithm:
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for each particle k > q {
x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
force qk[X] = G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
force qk[Y] = G∗masses[q]∗masses[k]/dist cubed ∗ y diff;

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] −= force qk[X];
forces[k][Y] −= force qk[Y];

}

Then, for example, when q= 0, we’ll make n− 1 passes through the for each
particle k > q loop, while when q= n− 1, we won’t make any passes through
the loop. Thus, for the reduced algorithm we would expect that a cyclic partition of
the particles would do a better job than a block partitition of evenly distributing the
computation.

However, in a shared-memory setting, a cyclic partition of the particles among the
cores is almost certain to result in a much higher number of cache misses than a block
partition, and in a distributed-memory setting, the overhead involved in communicat-
ing data that has a cyclic distribution will probably be greater than the overhead
involved in communicating data that has a block distribution (see Exercises 6.8
and 6.9).

Therefore with a composite task consisting of all of the computations associated
with a single particle throughout the simulation, we conclude the following:

1. A block distribution will give the best performance for the basic n-body solver.
2. For the reduced n-body solver, a cyclic distribution will best distribute the work-

load in the computation of the forces. However, this improved performance may
be offset by the cost of reduced cache performance in a shared-memory setting
and additional communication overhead in a distributed-memory setting.

In order to make a final determination of the optimal mapping of tasks to cores, we’ll
need to do some experimentation.

6.1.4 A word about I/O
You may have noticed that our discussion of parallelizing the n-body solver hasn’t
touched on the issue of I/O, even though I/O can figure prominently in both of our
serial algorithms. We’ve discussed the problem of I/O several times in earlier chap-
ters. Recall that different parallel systems vary widely in their I/O capabilities, and
with the very basic I/O that is commonly available it is very difficult to obtain high
performance. This basic I/O was designed for use by single-process, single-threaded
programs, and when multiple processes or multiple threads attempt to access the
I/O buffers, the system makes no attempt to schedule their access. For example, if
multiple threads attempt to execute

printf("Hello from thread %d of %d\n", my rank, thread count);
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more or less simultaneously, the order in which the output appears will be unpre-
dictable. Even worse, one thread’s output may not even appear as a single line. It
can happen that the output from one thread appears as multiple segments, and the
individual segments are separated by output from other threads.

Thus, as we’ve noted earlier, except for debug output, we generally assume that
one process/thread does all the I/O, and when we’re timing program execution, we’ll
use the option to only print output for the final timestep. Furthermore, we won’t
include this output in the reported run-times.

Of course, even if we’re ignoring the cost of I/O, we can’t ignore its existence.
We’ll briefly discuss its implementation when we discuss the details of our parallel
implementations.

6.1.5 Parallelizing the basic solver using OpenMP
How can we use OpenMP to map tasks/particles to cores in the basic version of our
n-body solver? Let’s take a look at the pseudocode for the serial program:

for each timestep {
if (timestep output) Print positions and velocities of particles;
for each particle q

Compute total force on q;
for each particle q

Compute position and velocity of q;
}

The two inner loops are both iterating over particles. So, in principle, parallelizing
the two inner for loops will map tasks/particles to cores, and we might try something
like this:

for each timestep {
if (timestep output) Print positions and velocities of

particles;
# pragma omp parallel for

for each particle q
Compute total force on q;

# pragma omp parallel for
for each particle q

Compute position and velocity of q;
}

We may not like the fact that this code could do a lot of forking and joining of threads,
but before dealing with that, let’s take a look at the loops themselves: we need to see
if there are any race conditions caused by loop-carried dependences.

In the basic version the first loop has the following form:

# pragma omp parallel for
for each particle q {

forces[q][X] = forces[q][Y] = 0;
for each particle k != q {

x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
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dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
forces[q][X] −= G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
forces[q][Y] −= G∗masses[q]∗masses[k]/dist cubed ∗ y diff;

}

}

Since the iterations of the for each particle q loop are partitioned among the
threads, only one thread will access forces[q] for any q. Different threads do access
the same elements of the pos array and the masses array. However, these arrays are
only read in the loop. The remaining variables are used for temporary storage in a
single iteration of the inner loop, and they can be private. Thus, the parallelization of
the first loop in the basic algorithm won’t introduce any race conditions.

The second loop has the form:

# pragma omp parallel for
for each particle q {

pos[q][X] += delta t∗vel[q][X];
pos[q][Y] += delta t∗vel[q][Y];
vel[q][X] += delta t/masses[q]∗forces[q][X];
vel[q][Y] += delta t/masses[q]∗forces[q][Y];

}

Here, a single thread accesses pos[q], vel[q], masses[q], and forces[q] for any
particle q, and the scalar variables are only read, so parallelizing this loop also won’t
introduce any race conditions.

Let’s return to the issue of repeated forking and joining of threads. In our
pseudocode, we have

for each timestep {
if (timestep output) Print positions and velocities of

particles;
# pragma omp parallel for

for each particle q
Compute total force on q;

# pragma omp parallel for
for each particle q

Compute position and velocity of q;
}

We encountered a similar issue when we parallelized odd-even transposition sort
(see Section 5.6.2). In that case, we put a parallel directive before the outermost
loop and used OpenMP for directives for the inner loops. Will a similar strategy
work here? That is, can we do something like this?

# pragma omp parallel
for each timestep {

if (timestep output) Print positions and velocities of
particles;

# pragma omp for
for each particle q
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Compute total force on q;
# pragma omp for

for each particle q
Compute position and velocity of q;

}

This will have the desired effect on the two for each particle loops: the same
team of threads will be used in both loops and for every iteration of the outer loop.
However, we have a clear problem with the output statement. As it stands now, every
thread will print all the positions and velocities, and we only want one thread to do
the I/O. However, OpenMP provides the single directive for exactly this situation:
we have a team of threads executing a block of code, but a part of the code should
only be executed by one of the threads. Adding the single directive gives us the
following pseudocode:

# pragma omp parallel
for each timestep {

if (timestep output) {
# pragma omp single

Print positions and velocities of particles;
}

# pragma omp for
for each particle q

Compute total force on q;
# pragma omp for

for each particle q
Compute position and velocity of q;

}

There are still a few issues that we need to address. The most important has to
do with possible race conditions introduced in the transition from one statement to
another. For example, suppose thread 0 completes the first for each particle loop
before thread 1, and it then starts updating the positions and velocities of its assigned
particles in the second for each particle loop. Clearly, this could cause thread
1 to use an updated position in the first for each particle loop. However, recall
that there is an implicit barrier at the end of each structured block that has been
parallelized with a for directive. So, if thread 0 finishes the first inner loop before
thread 1, it will block until thread 1 (and any other threads) finish the first inner loop,
and it won’t start the second inner loop until all the threads have finished the first. This
will also prevent the possibility that a thread might rush ahead and print positions and
velocities before they’ve all been updated by the second loop.

There’s also an implicit barrier after the single directive, although in this pro-
gram the barrier isn’t necessary. Since the output statement won’t update any memory
locations, it’s OK for some threads to go ahead and start executing the next iteration
before output has been completed. Furthermore, the first inner for loop in the next
iteration only updates the forces array, so it can’t cause a thread executing the output
statement to print incorrect values, and because of the barrier at the end of the first
inner loop, no thread can race ahead and start updating positions and velocities in
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the second inner loop before the output has been completed. Thus, we could modify
the single directive with a nowait clause. If the OpenMP implementation supports
it, this simply eliminates the implied barrier associated with the single directive. It
can also be used with for, parallel for, and parallel directives. Note that in this
case, addition of the nowait clause is unlikely to have much effect on performance,
since the two for each particle loops have implied barriers that will prevent any
one thread from getting more than a few statements ahead of any other.

Finally, we may want to add a schedule clause to each of the for directives in
order to insure that the iterations have a block partition:

# pragma omp for schedule(static, n/thread count)

6.1.6 Parallelizing the reduced solver using OpenMP
The reduced solver has an additional inner loop: the initialization of the forces
array to 0. If we try to use the same parallelization for the reduced solver, we
should also parallelize this loop with a for directive. What happens if we try this?
That is, what happens if we try to parallelize the reduced solver with the following
pseudocode?

# pragma omp parallel
for each timestep {

if (timestep output) {
# pragma omp single

Print positions and velocities of particles;
}

# pragma omp for
for each particle q

forces[q] = 0.0;
# pragma omp for

for each particle q
Compute total force on q;

# pragma omp for
for each particle q

Compute position and velocity of q;
}

Parallelization of the initialization of the forces should be fine, as there’s no depen-
dence among the iterations. The updating of the positions and velocities is the same
in both the basic and reduced solvers, so if the computation of the forces is OK, then
this should also be OK.

How does parallelization affect the correctness of the loop for computing the
forces? Recall that in the reduced version, this loop has the following form:

# pragma omp for /∗ Can be faster than memset ∗/
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {
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x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
force qk[X] = G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
force qk[Y] = G∗masses[q]∗masses[k]/dist cubed ∗ y diff;

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] −= force qk[X];
forces[k][Y] −= force qk[Y];

}

}

As before, the variables of interest are pos, masses, and forces, since the values in
the remaining variables are only used in a single iteration, and hence, can be private.
Also, as before, elements of the pos and masses arrays are only read, not updated.
We therefore need to look at the elements of the forces array. In this version, unlike
the basic version, a thread may update elements of the forces array other than those
corresponding to its assigned particles. For example, suppose we have two threads
and four particles and we’re using a block partition of the particles. Then the total
force on particle 3 is given by

F3 =−f03− f13− f23.

Furthermore, thread 0 will compute f03 and f13, while thread 1 will compute f23. Thus,
the updates to forces[3] do create a race condition. In general, then, the updates to
the elements of the forces array introduce race conditions into the code.

A seemingly obvious solution to this problem is to use a critical directive
to limit access to the elements of the forces array. There are at least a couple of
ways to do this. The simplest is to put a critical directive before all the updates to
forces

# pragma omp critical
{

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] −= force qk[X];
forces[k][Y] −= force qk[Y];

}

However, with this approach access to the elements of the forces array will be
effectively serialized. Only one element of forces can be updated at a time, and
contention for access to the critical section is actually likely to seriously degrade the
performance of the program. See Exercise 6.3.

An alternative would be to have one critical section for each particle. However,
as we’ve seen, OpenMP doesn’t readily support varying numbers of critical sections,
so we would need to use one lock for each particle instead and our updates would
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look something like this:

omp set lock(&locks[q]);
forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
omp unset lock(&locks[q]);

omp set lock(&locks[k]);
forces[k][X] −= force qk[X];
forces[k][Y] −= force qk[Y];
omp unset lock(&locks[k]);

This assumes that the master thread will create a shared array of locks, one for
each particle, and when we update an element of the forces array, we first set
the lock corresponding to that particle. Although this approach performs much bet-
ter than the single critical section, it still isn’t competitive with the serial code. See
Exercise 6.4.

Another possible solution is to carry out the computation of the forces in two
phases. In the first phase, each thread carries out exactly the same calculations it
carried out in the erroneous parallelization. However, now the calculations are stored
in its own array of forces. Then, in the second phase, the thread that has been assigned
particle q will add the contributions that have been computed by the different threads.
In our example above, thread 0 would compute −f03− f13, while thread 1 would
compute −f23. After each thread was done computing its contributions to the forces,
thread 1, which has been assigned particle 3, would find the total force on particle 3
by adding these two values.

Let’s look at a slightly larger example. Suppose we have three threads and six
particles. If we’re using a block partition of the particles, then the computations in
the first phase are shown in Table 6.1. The last three columns of the table show
each thread’s contribution to the computation of the total forces. In phase 2 of the
computation, the thread specified in the first column of the table will add the contents
of each of its assigned rows—that is, each of its assigned particles.

Note that there’s nothing special about using a block partition of the particles.
Table 6.2 shows the same computations if we use a cyclic partition of the particles.

Table 6.1 First-Phase Computations for a Reduced Algorithm
with Block Partition

Thread

Thread Particle 0 1 2

0 0 f01+ f02+ f03+ f04+ f05 0 0
1 −f01+ f12+ f13+ f14+ f15 0 0

1 2 −f02− f12 f23+ f24+ f25 0
3 −f03− f13 −f23+ f34+ f35 0

2 4 −f04− f14 −f24− f34 f45
5 −f05− f15 −f25− f35 −f45
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Table 6.2 First-Phase Computations for a Reduced Algorithm with Cyclic Partition

Thread

Thread Particle 0 1 2

0 0 f01+ f02+ f03+ f04+ f05 0 0
1 1 −f01 f12+ f13+ f14+ f15 0
2 2 −f02 −f12 f23+ f24+ f25
0 3 −f03+ f34+ f35 −f13 −f23
1 4 −f04− f34 −f14+ f45 −f24
2 5 −f05− f35 −f15− f45 −f25

Note that if we compare this table with the table that shows the block partition, it’s
clear that the cyclic partition does a better job of balancing the load.

To implement this, during the first phase our revised algorithm proceeds as
before, except that each thread adds the forces it computes into its own subarray
of loc forces:

# pragma omp for
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {

x diff = pos[q][X] − pos[k][X];
y diff = pos[q][Y] − pos[k][Y];
dist = sqrt(x diff∗x diff + y diff∗y diff);
dist cubed = dist∗dist∗dist;
force qk[X] = G∗masses[q]∗masses[k]/dist cubed ∗ x diff;
force qk[Y] = G∗masses[q]∗masses[k]/dist cubed ∗ y diff;

loc forces[my rank][q][X] += force qk[X];
loc forces[my rank][q][Y] += force qk[Y];
loc forces[my rank][k][X] −= force qk[X];
loc forces[my rank][k][Y] −= force qk[Y];

}

}

During the second phase, each thread adds the forces computed by all the threads for
its assigned particles:

# pragma omp for
for (q = 0; q < n; q++) {

forces[q][X] = forces[q][Y] = 0;
for (thread = 0; thread < thread count; thread++) {

forces[q][X] += loc forces[thread][q][X];
forces[q][Y] += loc forces[thread][q][Y];

}

}

Before moving on, we should make sure that we haven’t inadvertently introduced
any new race conditions. During the first phase, since each thread writes to its own
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subarray, there isn’t a race condition in the updates to loc forces. Also, during the
second phase, only the “owner” of thread q writes to forces[q], so there are no race
conditions in the second phase. Finally, since there is an implied barrier after each
of the parallelized for loops, we don’t need to worry that some thread is going to
race ahead and make use of a variable that hasn’t been properly initialized, or that
some slow thread is going to make use of a variable that has had its value changed
by another thread.

6.1.7 Evaluating the OpenMP codes
Before we can compare the basic and the reduced codes, we need to decide how to
schedule the parallelized for loops. For the basic code, we’ve seen that any schedule
that divides the iterations equally among the threads should do a good job of balanc-
ing the computational load. (As usual, we’re assuming no more than one thread/core.)
We also observed that a block partitioning of the iterations would result in fewer
cache misses than a cyclic partition. Thus, we would expect that a block schedule
would be the best option for the basic version.

In the reduced code, the amount of work done in the first phase of the computation
of the forces decreases as the for loop proceeds. We’ve seen that a cyclic schedule
should do a better job of assigning more or less equal amounts of work to each thread.
In the remaining parallel for loops—the initialization of the loc forces array, the
second phase of the computation of the forces, and the updating of the positions and
velocities—the work required is roughly the same for all the iterations. Therefore,
taken out of context each of these loops will probably perform best with a block
schedule. However, the schedule of one loop can affect the performance of another
(see Exercise 6.10), so it may be that choosing a cyclic schedule for one loop and
block schedules for the others will degrade performance.

With these choices, Table 6.3 shows the performance of the n-body solvers when
they’re run on one of our systems with no I/O. The solver used 400 particles for 1000
timesteps. The column labeled “Default Sched” gives times for the OpenMP reduced
solver when all of the inner loops use the default schedule, which, on our system,
is a block schedule. The column labeled “Forces Cyclic” gives times when the first
phase of the forces computation uses a cyclic schedule and the other inner loops use
the default schedule. The last column, labeled “All Cyclic,” gives times when all of

Table 6.3 Run-Times of the n-Body Solvers Parallelized
with OpenMP (times are in seconds)

Reduced Reduced Reduced
Threads Basic Default Sched Forces Cyclic All Cyclic

1 7.71 3.90 3.90 3.90
2 3.87 2.94 1.98 2.01
4 1.95 1.73 1.01 1.08
8 0.99 0.95 0.54 0.61
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the inner loops use a cyclic schedule. The run-times of the serial solvers differ from
those of the single-threaded solvers by less than 1%, so we’ve omitted them from the
table.

Notice that with more than one thread the reduced solver, using all default sched-
ules, takes anywhere from 50 to 75% longer than the reduced solver with the cyclic
forces computation. Using the cyclic schedule is clearly superior to the default sched-
ule in this case, and any loss in time resulting from cache issues is more than made
up for by the improved load balance for the computations.

For only two threads there is very little difference between the performance of the
reduced solver with only the first forces loop cyclic and the reduced solver with all
loops cyclic. However, as we increase the number of threads, the performance of the
reduced solver that uses a cyclic schedule for all of the loops does start to degrade. In
this particular case, when there are more threads, it appears that the overhead involved
in changing distributions is less than the overhead incurred from false sharing.

Finally, notice that the basic solver takes about twice as long as the reduced solver
with the cyclic scheduling of the forces computation. So if the extra memory is avail-
able, the reduced solver is clearly superior. However, the reduced solver increases the
memory requirement for the storage of the forces by a factor of thread count, so
for very large numbers of particles, it may be impossible to use the reduced solver.

6.1.8 Parallelizing the solvers using pthreads
Parallelizing the two n-body solvers using Pthreads is very similar to parallelizing
them using OpenMP. The differences are only in implementation details, so rather
than repeating the discussion, we will point out some of the principal differences
between the Pthreads and the OpenMP implementations. We will also note some of
the more important similarities.

. By default local variables in Pthreads are private, so all shared variables are global
in the Pthreads version.. The principal data structures in the Pthreads version are identical to those in the
OpenMP version: vectors are two-dimensional arrays of doubles, and the mass,
position, and velocity of a single particle are stored in a struct. The forces are
stored in an array of vectors.. Startup for Pthreads is basically the same as the startup for OpenMP: the main
thread gets the command-line arguments, and allocates and initializes the principal
data structures.. The main difference between the Pthreads and the OpenMP implementations is in
the details of parallelizing the inner loops. Since Pthreads has nothing analogous
to a parallel for directive, we must explicitly determine which values of the
loop variables correspond to each thread’s calculations. To facilitate this, we’ve
written a function Loop schedule, which determines. the initial value of the loop variable,. the final value of the loop variable, and. the increment for the loop variable.
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The input to the function is. the calling thread’s rank,. the number of threads,. the total number of iterations, and. an argument indicating whether the partitioning should be block or cyclic.. Another difference between the Pthreads and the OpenMP versions has to do
with barriers. Recall that the end of a parallel for directive in OpenMP has
an implied barrier. As we’ve seen, this is important. For example, we don’t want
a thread to start updating its positions until all the forces have been calculated,
because it could use an out-of-date force and another thread could use an out-
of-date position. If we simply partition the loop iterations among the threads in
the Pthreads version, there won’t be a barrier at the end of an inner for loop and
we’ll have a race condition. Thus, we need to add explicit barriers after the inner
loops when a race condition can arise. The Pthreads standard includes a barrier.
However, some systems don’t implement it, so we’ve defined a function that uses
a Pthreads condition variable to implement a barrier. See Subsection 4.8.3 for
details.

6.1.9 Parallelizing the basic solver using MPI
With our composite tasks corresponding to the individual particles, it’s fairly straight-
forward to parallelize the basic algorithm using MPI. The only communication
among the tasks occurs when we’re computing the forces, and, in order to compute
the forces, each task/particle needs the position and mass of every other particle.
MPI Allgather is expressly designed for this situation, since it collects on each
process the same information from every other process. We’ve already noted that
a block distribution will probably have the best performance, so we should use a
block mapping of the particles to the processes.

In the shared-memory implementations, we collected most of the data associated
with a single particle (mass, position, and velocity) into a single struct. However, if
we use this data structure in the MPI implementation, we’ll need to use a derived
datatype in the call to MPI Allgather, and communications with derived datatypes
tend to be slower than communications with basic MPI types. Thus, it will make
more sense to use individual arrays for the masses, positions, and velocities. We’ll
also need an array for storing the positions of all the particles. If each process has
sufficient memory, then each of these can be a separate array. In fact, if memory isn’t
a problem, each process can store the entire array of masses, since these will never
be updated and their values only need to be communicated during the initial setup.

On the other hand, if memory is short, there is an “in-place” option that can be
used with some MPI collective communications. For our situation, suppose that the
array pos can store the positions of all n particles. Further suppose that vect mpi t
is an MPI datatype that stores two contiguous doubles. Also suppose that n is evenly
divisible by comm sz and loc n = n/comm sz. Then, if we store the local positions in
a separate array, loc pos, we can use the following call to collect all of the positions
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on each process:

MPI Allgather(loc pos, loc n, vect mpi t,
pos, loc n, vect mpi t, comm);

If we can’t afford the extra storage for loc pos, then we can have each process q
store its local positions in the qth block of pos. That is, the local positions of each
process should be stored in the appropriate block of each process’ pos array:

Process 0: pos[0], pos[1], . . . , pos[loc n−1]
Process 1: pos[loc n], pos[loc n+1], . . . , pos[loc n + loc n−1]

. . .
Process q: pos[q∗loc n], pos[q∗loc n+1], . . . , pos[q∗loc n +

loc n−1]
. . .

With the pos array initialized this way on each process, we can use the following
call to MPI Allgather:

MPI Allgather(MPI IN PLACE, loc n, vect mpi t,
pos, loc n, vect mpi t, comm);

In this call, the first loc n and vect mpi t arguments are ignored. However, it’s not
a bad idea to use arguments whose values correspond to the values that will be used,
just to increase the readability of the program.

In the program we’ve written, we made the following choices with respect to the
data structures:

. Each process stores the entire global array of particle masses.. Each process only uses a single n-element array for the positions.. Each process uses a pointer loc pos that refers to the start of its block of pos.
Thus, on process, 0 local pos = pos, on process 1 local pos = pos + loc n,
and, so on.

With these choices, we can implement the basic algorithm with the pseudocode
shown in Program 6.2. Process 0 will read and broadcast the command line argu-
ments. It will also read the input and print the results. In Line 1, it will need
to distribute the input data. Therefore, Get input data might be implemented as
follows:

if (my rank == 0) {
for each particle

Read masses[particle], pos[particle], vel[particle];
}

MPI Bcast(masses, n, MPI DOUBLE, 0, comm);
MPI Bcast(pos, n, vect mpi t, 0, comm);
MPI Scatter(vel, loc n, vect mpi t, loc vel, loc n, vect mpi t, 0,

comm);

So process 0 reads all the initial conditions into three n-element arrays. Since we’re
storing all the masses on each process, we broadcast masses. Also, since each process
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1 Get input data;
2 for each timestep {
3 if (timestep output)
4 Print positions and velocities of particles;
5 for each local particle loc q
6 Compute total force on loc q;
7 for each local particle loc q
8 Compute position and velocity of loc q;
9 Allgather local positions into global pos array;

10 }

11 Print positions and velocities of particles;

Program 6.2: Pseudocode for the MPI version of the basic n-body solver

will need the global array of positions for the first computation of forces in the main
for loop, we just broadcast pos. However, velocities are only used locally for the
updates to positions and velocities, so we scatter vel.

Notice that we gather the updated positions in Line 9 at the end of the body
of the outer for loop of Program 6.2. This insures that the positions will be avail-
able for output in both Line 4 and Line 11. If we’re printing the results for each
timestep, this placement allows us to eliminate an expensive collective communica-
tion call: if we simply gathered the positions onto process 0 before output, we’d have
to call MPI Allgather before the computation of the forces. With this organization
of the body of the outer for loop, we can implement the output with the following
pseudocode:

Gather velocities onto process 0;
if (my rank == 0) {

Print timestep;
for each particle

Print pos[particle] and vel[particle]
}

6.1.10 Parallelizing the reduced solver using MPI
The “obvious” implementation of the reduced algorithm is likely to be extremely
complicated. Before computing the forces, each process will need to gather a subset
of the positions, and after the computation of the forces, each process will need to
scatter some of the individual forces it has computed and add the forces it receives.
Figure 6.6 shows the communications that would take place if we had three processes,
six particles, and used a block partitioning of the particles among the processes.
Not suprisingly, the communications are even more complex when we use a cyclic
distribution (see Exercise 6.13). Certainly it would be possible to implement these
communications. However, unless the implementation were very carefully done, it
would probably be very slow.

Fortunately, there’s a much simpler alternative that uses a communication struc-
ture that is sometimes called a ring pass. In a ring pass, we imagine the processes
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FIGURE 6.6

Communication in a possible MPI implementation of the reduced n-body solver

as being interconnected in a ring (see Figure 6.7). Process 0 communicates directly
with processes 1 and comm sz− 1, process 1 communicates with processes 0 and 2,
and so on. The communication in a ring pass takes place in phases, and during each
phase each process sends data to its “lower-ranked” neighbor, and receives data from
its “higher-ranked” neighbor. Thus, 0 will send to comm sz− 1 and receive from 1. 1
will send to 0 and receive from 2, and so on. In general, process q will send to process
(q− 1+ comm sz)%comm sz and receive from process (q+ 1)%comm sz.

0 1

3 2

FIGURE 6.7

A ring of processes

By repeatedly sending and receiving data using this ring structure, we can arrange
that each process has access to the positions of all the particles. During the first phase,
each process will send the positions of its assigned particles to its “lower-ranked”
neighbor and receive the positions of the particles assigned to its higher-ranked neigh-
bor. During the next phase, each process will forward the positions it received in the
first phase. This process continues through comm sz− 1 phases until each process has
received the positions of all of the particles. Figure 6.8 shows the three phases if there
are four processes and eight particles that have been cyclically distributed.

Of course, the virtue of the reduced algorithm is that we don’t need to compute all
of the inter-particle forces since fkq =−fqk, for every pair of particles q and k. To see
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Ring pass of positions

how to exploit this, first observe that using the reduced algorithm, the interparticle
forces can be divided into those that are added into and those that are subtracted
from the total forces on the particle. For example, if we have six particles, then the
reduced algorithm will compute the force on particle 3 as

F3 =−f03− f13− f23+ f34+ f35.

The key to understanding the ring pass computation of the forces is to observe that
the interparticle forces that are subtracted are computed by another task/particle,
while the forces that are added are computed by the owning task/particle. Thus, the
computations of the interparticle forces on particle 3 are assigned as follows:

Force f03 f13 f23 f34 f35

Task/Particle 0 1 2 3 3

So, suppose that for our ring pass, instead of simply passing loc n = n/comm sz
positions, we also pass loc n forces. Then in each phase, a process can

1. compute interparticle forces resulting from interaction between its assigned
particles and the particles whose positions it has received, and

2. once an interparticle force has been computed, the process can add the force
into a local array of forces corresponding to its particles, and it can subtract the
interparticle force from the received array of forces.

See, for example, [15, 34] for further details and alternatives.
Let’s take a look at how the computation would proceed when we have four par-

ticles, two processes, and we’re using a cyclic distribution of the particles among
the processes (see Table 6.4). We’re calling the arrays that store the local positions
and local forces loc pos and loc forces, respectively. These are not communicated
among the processes. The arrays that are communicated among the processes are
tmp pos and tmp forces.

Before the ring pass can begin, both arrays storing positions are initialized with
the positions of the local particles, and the arrays storing the forces are set to 0. Before
the ring pass begins, each process computes those forces that are due to interaction



6.1 Two n-Body Solvers 295

Table 6.4 Computation of Forces in Ring Pass

Time Variable Process 0 Process 1

Start loc pos s0,s2 s1,s3
loc forces 0,0 0,0

tmp pos s0,s2 s1,s3
tmp forces 0,0 0,0

After loc pos s0,s2 s1,s3
Comp of loc forces f02,0 f13,0
Forces tmp pos s0,s2 s1,s3

tmp forces 0,−f02 0,−f13

After loc pos s0,s2 s1,s3
First loc forces f02,0 f13,0
Comm tmp pos s1,s3 s0,s2

tmp forces 0,−f13 0,−f02

After loc pos s0,s2 s1,s3
Comp of loc forces f01+ f02+ f03, f23 f12+ f13,0
Forces tmp pos s1,s3 s0,s2

tmp forces −f01,−f03− f13− f23 0,−f02− f12

After loc pos s0,s2 s1,s3
Second loc forces f01+ f02+ f03, f23 f12+ f13,0
Comm tmp pos s0,s2 s1,s3

tmp forces 0,−f02− f12 −f01,−f03− f13− f23

After loc pos s0,s2 s1,s3
Comp of loc forces f01+ f02+ f03,−f02− f12+ f23 −f01+ f12+ f13,−f03− f13− f23
Forces tmp pos s0,s2 s1,s3

tmp forces 0,−f02− f12 −f01,−f03− f13− f23

among its assigned particles. Process 0 computes f02 and process 1 computes f13.
These values are added into the appropriate locations in loc forces and subtracted
from the appropriate locations in tmp forces.

Now, the two processes exchange tmp pos and tmp forces and compute the
forces due to interaction among their local particles and the received particles. In
the reduced algorithm, the lower ranked task/particle carries out the computation.
Process 0 computes f01, f03, and f23, while process 1 computes f12. As before, the
newly computed forces are added into the appropriate locations in loc forces and
subtracted from the appropriate locations in tmp forces.

To complete the algorithm, we need to exchange the tmp arrays one final time.1

Once each process has received the updated tmp forces, it can carry out a simple
vector sum

loc forces += tmp forces

to complete the algorithm.

1Actually, we only need to exchange tmp forces for the final communication.
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1 source = (my rank + 1) % comm sz;
2 dest = (my rank − 1 + comm sz) % comm sz;
3 Copy loc pos into tmp pos;
4 loc forces = tmp forces = 0;
5
6 Compute forces due to interactions among local particles;
7 for (phase = 1; phase < comm sz; phase++) {
8 Send current tmp pos and tmp forces to dest;
9 Receive new tmp pos and tmp forces from source;

10 /∗ Owner of the positions and forces we’re receiving ∗/
11 owner = (my rank + phase) % comm sz;
12 Compute forces due to interactions among my particles
13 and owner’s particles;
14 }

15 Send current tmp pos and tmp forces to dest;
16 Receive new tmp pos and tmp forces from source;

Program 6.3: Pseudocode for the MPI implementation of the reduced n-body solver

Thus, we can implement the computation of the forces in the reduced algorithm
using a ring pass with the pseudocode shown in Program 6.3. Recall that using
MPI Send and MPI Recv for the send-receive pairs in Lines 8 and 9 and 15 and
16 is unsafe in MPI parlance, since they can hang if the system doesn’t provide
sufficient buffering. In this setting, recall that MPI provides MPI Sendrecv and
MPI Sendrecv replace. Since we’re using the same memory for both the outgoing
and the incoming data, we can use MPI Sendrecv replace.

Also recall that the time it takes to start up a message is substantial. We can
probably reduce the cost of the communication by using a single array to store
both tmp pos and tmp forces. For example, we could allocate storage for an array
tmp data that can store 2× loc n objects with type vect t and use the first loc n
for tmp pos and the last loc n for tmp forces. We can continue to use tmp pos
and tmp forces by making these pointers to tmp data[0] and tmp data[loc n],
respectively.

The principal difficulty in implementing the actual computation of the forces in
Lines 12 and 13 lies in determining whether the current process should compute the
force resulting from the interaction of a particle q assigned to it and a particle r whose
position it has received. If we recall the reduced algorithm (Program 6.1), we see that
task/particle q is responsible for computing fqr if and only if q< r. However, the
arrays loc pos and tmp pos (or a larger array containing tmp pos and tmp forces)
use local subscripts, not global subscripts. That is, when we access an element of
(say) loc pos, the subscript we use will lie in the range 0,1, . . . ,loc n− 1, not
0,1, . . . ,n− 1; so, if we try to implement the force interaction with the following
pseudocode, we’ll run into (at least) a couple of problems:

for (loc part1 = 0; loc part1 < loc n−1; loc part1++)
for (loc part2 = loc part1+1; loc part2 < loc n; loc part2++)
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Compute force(loc pos[loc part1], masses[loc part1],
tmp pos[loc part2], masses[loc part2],
loc forces[loc part1], tmp forces[loc part2]);

The first, and most obvious, is that masses is a global array and we’re using local
subscripts to access its elements. The second is that the relative sizes of loc part1
and loc part2 don’t tell us whether we should compute the force due to their inter-
action. We need to use global subscripts to determine this. For example, if we have
four particles and two processes, and the preceding code is being run by process 0,
then when loc part1 = 0, the inner loop will skip loc part2 = 0 and start with
loc part2 = 1; however, if we’re using a cyclic distribution, loc part1 = 0 corre-
sponds to global particle 0 and loc part2 = 0 corresponds to global particle 1, and
we should compute the force resulting from interaction between these two particles.

Clearly, the problem is that we shouldn’t be using local particle indexes, but rather
we should be using global particle indexes. Thus, using a cyclic distribution of the
particles, we could modify our code so that the loops also iterate through global
particle indexes:

for (loc part1 = 0, glb part1 = my rank;
loc part1 < loc n−1;
loc part1++, glb part1 += comm sz)

for (glb part2 = First index(glb part1, my rank, owner, comm sz),
loc part2 = Global to local(glb part2, owner, loc n);
loc part2 < loc n;
loc part2++, glb part2 += comm sz)
Compute force(loc pos[loc part1], masses[glb part1],

tmp pos[loc part2], masses[glb part2],
loc forces[loc part1], tmp forces[loc part2]);

The function First index should determine a global index glb part2 with the
following properties:

1. The particle glb part2 is assigned to the process with rank owner.
2. glb part1 < glb part2 < glb part1 + comm sz.

The function Global to local should convert a global particle index into a local par-
ticle index, and the function Compute force should compute the force resulting from
the interaction of two particles. We already know how to implement Compute force.
See Exercises 6.15 and 6.16 for the other two functions.

6.1.11 Performance of the MPI solvers
Table 6.5 shows the run-times of the two n-body solvers when they’re run with 800
particles for 1000 timesteps on an Infiniband-connected cluster. All the timings were
taken with one process per cluster node. The run-times of the serial solvers differed
from the single-process MPI solvers by less than 1%, so we haven’t included them.

Clearly, the performance of the reduced solver is much superior to the perfor-
mance of the basic solver, although the basic solver achieves higher efficiencies.
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Table 6.5 Performance of the MPI
n-Body Solvers (times in seconds)

Processes Basic Reduced

1 17.30 8.68
2 8.65 4.45
4 4.35 2.30
8 2.20 1.26

16 1.13 0.78

Table 6.6 Run-Times for OpenMP and MPI n-Body
Solvers (times in seconds)

OpenMP MPI

Basic Reduced Basic Reduced

Processes/

Threads

1 15.13 8.77 17.30 8.68
2 7.62 4.42 8.65 4.45
4 3.85 2.26 4.35 2.30

For example, the efficiency of the basic solver on 16 nodes is about 0.95, while the
efficiency of the reduced solver on 16 nodes is only about 0.70.

A point to stress here is that the reduced MPI solver makes much more efficient
use of memory than the basic MPI solver; the basic solver must provide storage for
all n positions on each process, while the reduced solver only needs extra storage for
n/comm sz positions and n/comm sz forces. Thus, the extra storage needed on each
process for the basic solver is nearly comm sz/2 times greater than the storage needed
for the reduced solver. When n and comm sz are very large, this factor can easily make
the difference between being able to run a simulation only using the process’ main
memory and having to use secondary storage.

The nodes of the cluster on which we took the timings have four cores, so we can
compare the performance of the OpenMP implementations with the performance of
the MPI implementations (see Table 6.6). We see that the basic OpenMP solver is a
good deal faster than the basic MPI solver. This isn’t surprising since MPI Allgather
is such an expensive operation. Perhaps surprisingly, though, the reduced MPI solver
is quite competitive with the reduced OpenMP solver.

Let’s take a brief look at the amount of memory required by the MPI and OpenMP
reduced solvers. Say that there are n particles and p threads or processes. Then each
solver will allocate the same amount of storage for the local velocities and the local
positions. The MPI solver allocates n doubles per process for the masses. It also
allocates 4n/p doubles for the tmp pos and tmp forces arrays, so in addition to the
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local velocities and positions, the MPI solver stores

n+ 4n/p

doubles per process. The OpenMP solver allocates a total of 2pn+ 2n doubles for
the forces and n doubles for the masses, so in addition to the local velocities and
positions, the OpenMP solver stores

3n/p+ 2n

doubles per thread. Thus, the difference in the local storage required for the OpenMP
version and the MPI version is

n− n/p

doubles. In other words, if n is large, the local storage required for the MPI ver-
sion is substantially less than the local storage required for the OpenMP version. So,
for a fixed number of processes or threads, we should be able to run much larger
simulations with the MPI version than the OpenMP version. Of course, because of
hardware considerations, we’re likely to be able to use many more MPI processes
than OpenMP threads, so the size of the largest possible MPI simulations should be
much greater than the size of the largest possible OpenMP simulations. The MPI ver-
sion of the reduced solver is much more scalable than any of the other versions, and
the “ring pass” algorithm provides a genuine breakthrough in the design of n-body
solvers.

6.2 TREE SEARCH
Many problems can be solved using a tree search. As a simple example, consider the
traveling salesperson problem, or TSP. In TSP, a salesperson is given a list of cities
she needs to visit and a cost for traveling between each pair of cities. Her problem is
to visit each city once, returning to her hometown, and she must do this with the least
possible cost. A route that starts in her hometown, visits each city once and returns
to her hometown is called a tour; thus, the TSP is to find a minimum-cost tour.

Unfortunately, TSP is what’s known as an NP-complete problem. From a practi-
cal standpoint, this means that there is no algorithm known for solving it that, in all
cases, is significantly better than exhaustive search. Exhaustive search means exam-
ining all possible solutions to the problem and choosing the best. The number of
possible solutions to TSP grows exponentially as the number of cities is increased.
For example, if we add one additional city to an n-city problem, we’ll increase the
number of possible solutions by a factor of n− 1. Thus, although there are only six
possible solutions to a four-city problem, there are 4× 6= 24 to a five-city problem,
5× 24= 120 to a six-city problem, 6× 120= 720 to a seven-city problem, and so
on. In fact, a 100-city problem has far more possible solutions than the number of
atoms in the universe!
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FIGURE 6.9

A four-city TSP

Furthermore, if we could find a solution to TSP that’s significantly better in all
cases than exhaustive search, then there are literally hundreds of other very hard
problems for which we could find fast solutions. Not only is there no known solution
to TSP that is better in all cases than exhaustive search, it’s very unlikely that we’ll
find one.

So how can we solve TSP? There are a number of clever solutions. However, let’s
take a look at an especially simple one. It’s a very simple form of tree search. The idea
is that in searching for solutions, we build a tree. The leaves of the tree correspond to
tours, and the other tree nodes correspond to “partial” tours—routes that have visited
some, but not all, of the cities.

Each node of the tree has an associated cost, that is, the cost of the partial tour.
We can use this to eliminate some nodes of the tree. Thus, we want to keep track
of the cost of the best tour so far, and, if we find a partial tour or node of the tree
that couldn’t possibly lead to a less expensive complete tour, we shouldn’t bother
searching the children of that node (see Figures 6.9 and 6.10).

In Figure 6.9 we’ve represented a four-city TSP as a labeled, directed graph. A
graph (not to be confused with a graph in calculus) is a collection of vertices and
edges or line segments joining pairs of vertices. In a directed graph or digraph, the
edges are oriented—one end of each edge is the tail, and the other is the head. A
graph or digraph is labeled if the vertices and/or edges have labels. In our example,
the vertices of the digraph correspond to the cities in an instance of the TSP, the edges
correspond to routes between the cities, and the labels on the edges correspond to the
costs of the routes. For example, there’s a cost of 1 to go from city 0 to city 1 and a
cost of 5 to go from city 1 to city 0.

If we choose vertex 0 as the salesperson’s home city, then the initial partial tour
consists only of vertex 0, and since we’ve gone nowhere, it’s cost is 0. Thus, the
root of the tree in Figure 6.10 has the partial tour consisting only of the vertex 0
with cost 0. From 0 we can first visit 1, 2, or 3, giving us three two-city partial
tours with costs 1, 3, and 8, respectively. In Figure 6.10 this gives us three chil-
dren of the root. Continuing, we get six three-city partial tours, and since there are
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Search tree for four-city TSP

only four cities, once we’ve chosen three of the cities, we know what the complete
tour is.

Now, to find a least-cost tour, we should search the tree. There are many ways to
do this, but one of the most commonly used is called depth-first search. In depth-
first search, we probe as deeply as we can into the tree. After we’ve either reached a
leaf or found a tree node that can’t possibly lead to a least-cost tour, we back up to the
deepest “ancestor” tree node with unvisited children, and probe one of its children as
deeply as possible.

In our example, we’ll start at the root, and branch left until we reach the leaf
labeled

0→ 1→ 2→ 3→ 0, Cost 20.

Then we back up to the tree node labeled 0→ 1, since it is the deepest ancestor node
with unvisited children, and we’ll branch down to get to the leaf labeled

0→ 1→ 3→ 2→ 0, Cost 20.

Continuing, we’ll back up to the root and branch down to the node labeled 0→ 2.
When we visit its child, labeled

0→ 2→ 1, Cost 21,

we’ll go no further in this subtree, since we’ve already found a complete tour with
cost less than 21. We’ll back up to 0→ 2 and branch down to its remaining unvisited
child. Continuing in this fashion, we eventually find the least-cost tour

0→ 3→ 1→ 2→ 0, Cost 15.
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6.2.1 Recursive depth-first search
Using depth-first search we can systematically visit each node of the tree that could
possibly lead to a least-cost solution. The simplest formulation of depth-first search
uses recursion (see Program 6.4). Later on it will be useful to have a definite order in
which the cities are visited in the for loop in Lines 8 to 13, so we’ll assume that the
cities are visited in order of increasing index, from city 1 to city n− 1.

The algorithm makes use of several global variables:

. n: the total number of cities in the problem. digraph: a data structure representing the input digraph. hometown: a data structure representing vertex or city 0, the salesperson’s
hometown. best tour: a data structure representing the best tour so far

The function City count examines the partial tour tour to see if there are n
cities on the partial tour. If there are, we know that we simply need to return to the
hometown to complete the tour, and we can check to see if the complete tour has a
lower cost than the current “best tour” by calling Best tour. If it does, we can replace
the current best tour with this tour by calling the function Update best tour. Note
that before the first call to Depth first search, the best tour variable should be
initialized so that its cost is greater than the cost of any possible least-cost tour.

If the partial tour tour hasn’t visited n cities, we can continue branching down
in the tree by “expanding the current node,” in other words, by trying to visit other
cities from the city last visited in the partial tour. To do this we simply loop through
the cities. The function Feasible checks to see if the city or vertex has already
been visited, and, if not, whether it can possibly lead to a least-cost tour. If the city
is feasible, we add it to the tour, and recursively call Depth first search. When

1 void Depth first search(tour t tour) {
2 city t city;
3
4 if (City count(tour) == n) {
5 if (Best tour(tour))
6 Update best tour(tour);
7 } else {
8 for each neighboring city
9 if (Feasible(tour, city)) {

10 Add city(tour, city);
11 Depth first search(tour);
12 Remove last city(tour, city);
13 }

14 }

15 } /∗ Depth first search ∗/

Program 6.4: Pseudocode for a recursive solution to TSP using depth-first search
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we return from Depth first search, we remove the city from the tour, since it
shouldn’t be included in the tour used in subsequent recursive calls.

6.2.2 Nonrecursive depth-first search
Since function calls are expensive, recursion can be slow. It also has the disadvantage
that at any given instant of time only the current tree node is accessible. This could
be a problem when we try to parallelize tree search by dividing tree nodes among the
threads or processes.

It is possible to write a nonrecursive depth-first search. The basic idea is modeled
on recursive implementation. Recall that recursive function calls can be implemented
by pushing the current state of the recursive function onto the run-time stack. Thus,
we can try to eliminate recursion by pushing necessary data on our own stack before
branching deeper into the tree, and when we need to go back up the tree—either
because we’ve reached a leaf or because we’ve found a node that can’t lead to a
better solution—we can pop the stack.

This outline leads to the implementation of iterative depth-first search shown in
Program 6.5. In this version, a stack record consists of a single city, the city that will
be added to the tour when its record is popped. In the recursive version we continue
to make recursive calls until we’ve visited every node of the tree that corresponds to
a feasible partial tour. At this point, the stack won’t have any more activation records
for calls to Depth first search, and we’ll return to the function that made the

1 for (city = n−1; city >= 1; city−−)
2 Push(stack, city);
3 while (!Empty(stack)) {
4 city = Pop(stack);
5 if (city == NO CITY) // End of child list, back up
6 Remove last city(curr tour);
7 else {
8 Add city(curr tour, city);
9 if (City count(curr tour) == n) {

10 if (Best tour(curr tour))
11 Update best tour(curr tour);
12 Remove last city(curr tour);
13 } else {
14 Push(stack, NO CITY);
15 for (nbr = n−1; nbr >= 1; nbr−−)
16 if (Feasible(curr tour, nbr))
17 Push(stack, nbr);
18 }

19 } /∗ if Feasible ∗/
20 } /∗ while !Empty ∗/

Program 6.5: Pseudocode for an implementation of a depth-first solution to TSP that
doesn’t use recursion
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original call to Depth first search. The main control structure in our iterative ver-
sion is the while loop extending from Line 3 to Line 20, and the loop termination
condition is that our stack is empty. As long as the search needs to continue, we need
to make sure the stack is nonempty, and, in the first two lines, we add each of the
non-hometown cities. Note that this loop visits the cities in decreasing order, from
n− 1 down to 1. This is because of the order created by the stack, whereby the stack
pops the top cities first. By reversing the order, we can insure that the cities are visited
in the same order as the recursive function.

Also notice that in Line 5 we check whether the city we’ve popped is the constant
NO CITY. This constant is used so that we can tell when we’ve visited all of the chil-
dren of a tree node; if we didn’t use it, we wouldn’t be able to tell when to back up
in the tree. Thus, before pushing all of the children of a node (Lines 15–17), we push
the NO CITY marker.

An alternative to this iterative version uses partial tours as stack records (see
Program 6.6). This gives code that is closer to the recursive function. However, it
also results in a slower version, since it’s necessary for the function that pushes onto
the stack to create a copy of the tour before actually pushing it on to the stack. To
emphasize this point, we’ve called the function Push copy. (What happens if we sim-
ply push a pointer to the current tour onto the stack?) The extra memory required will
probably not be a problem. However, allocating storage for a new tour and copying
the existing tour is time-consuming. To some degree we can mitigate these costs by
saving freed tours in our own data structure, and when a freed tour is available we
can use it in the Push copy function instead of calling malloc.

On the other hand, this version has the virtue that the stack is more or less
independent of the other data structures. Since entire tours are stored, multiple threads
or processes can “help themselves” to tours, and, if this is done reasonably carefully,

1 Push copy(stack, tour); // Tour that visits only the hometown
2 while (!Empty(stack)) {
3 curr tour = Pop(stack);
4 if (City count(curr tour) == n) {
5 if (Best tour(curr tour))
6 Update best tour(curr tour);
7 } else {
8 for (nbr = n−1; nbr >= 1; nbr−−)
9 if (Feasible(curr tour, nbr)) {

10 Add city(curr tour, nbr);
11 Push copy(stack, curr tour);
12 Remove last city(curr tour);
13 }

14 }

15 Free tour(curr tour);
16 }

Program 6.6: Pseudocode for a second solution to TSP that doesn’t use recursion
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it won’t destroy the correctness of the program. With the original iterative version, a
stack record is just a city and it doesn’t provide enough information by itself to show
where we are in the tree.

6.2.3 Data structures for the serial implementations
Our principal data structures are the tour, the digraph, and, in the iterative implemen-
tations, the stack. The tour and the stack are essentially list structures. In problems
that we’re likely to be able to tackle, the number of cities is going to be small—
certainly less than 100—so there’s no great advantage to using a linked list to
represent the tours and we’ve used an array that can store n+ 1 cities. We repeat-
edly need both the number of cities in the partial tour and the cost of the partial tour.
Therefore, rather than just using an array for the tour data structure and recomput-
ing these values, we use a struct with three members: the array storing the cities, the
number of cities, and the cost of the partial tour.

To improve the readability and the performance of the code, we can use prepro-
cessor macros to access the members of the struct. However, since macros can be
a nightmare to debug, it’s a good idea to write “accessor” functions for use during
initial development. When the program with accessor functions is working, they can
be replaced with macros. As an example, we might start with the function

/∗ Find the ith city on the partial tour ∗/
int Tour city(tour t tour, int i) {

return tour−>cities[i];
} /∗ Tour city ∗/

When the program is working, we could replace this with the macro

/∗ Find the ith city on the partial tour ∗/
#define Tour city(tour, i) (tour−>cities[i])

The stack in the original iterative version is just a list of cities or ints. Further-
more, since there can’t be more than n2/2 records on the stack (see Exercise 6.17) at
any one time, and n is likely to be small, we can just use an array, and like the tour
data structure, we can store the number of elements on the stack. Thus, for example,
Push can be implemented with

void Push(my stack t stack, int city) {
int loc = stack−>list sz;
stack−>list[loc] = city;
stack−>list sz++;

} /∗ Push ∗/

In the second iterative version, the version that stores entire tours in the stack, we can
probably still use an array to store the tours on the stack. Now the push function will
look something like this:

void Push copy(my stack t stack, tour t tour) {
int loc = stack−>list sz;
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tour t tmp = Alloc tour();
Copy tour(tour, tmp);
stack−>list[loc] = tmp;
stack−>list sz++;

} /∗ Push ∗/

Once again, element access for the stack can be implemented with macros.
There are many possible representations for digraphs. When the digraph has rela-

tively few edges, list representations are preferred. However, in our setting, if vertex
i is different from vertex j, there are directed, weighted edges from i to j and from j to
i, so we need to store a weight for each ordered pair of distinct vertices i and j. Thus,
in our setting, an adjacency matrix is almost certainly preferable to a list structure.
This is an n× n matrix, in which the weight of the edge from vertex i to vertex j can
be the entry in the ith row and jth column of the matrix. We can access this weight
directly, without having to traverse a list. The diagonal elements (row i and column i)
aren’t used, and we’ll set them to 0.

6.2.4 Performance of the serial implementations
The run-times of the three serial implementations are shown in Table 6.7. The input
digraph contained 15 vertices (including the hometown), and all three algorithms vis-
ited approximately 95,000,000 tree nodes. The first iterative version is less than 5%
faster than the recursive version, and the second iterative version is about 8% slower
than the recursive version. As expected, the first iterative solution eliminates some
of the overhead due to repeated function calls, while the second iterative solution is
slower because of the repeated copying of tour data structures. However, as we’ll see,
the second iterative solution is relatively easy to parallelize, so we’ll be using it as
the basis for the parallel versions of tree search.

6.2.5 Parallelizing tree search
Let’s take a look at parallelizing tree search. The tree structure suggests that we iden-
tify tasks with tree nodes. If we do this, the tasks will communicate down the tree
edges: a parent will communicate a new partial tour to a child, but a child, except for
terminating, doesn’t communicate directly with a parent.

We also need to take into consideration the updating and use of the best tour. Each
task examines the best tour to determine whether the current partial tour is feasible or
the current complete tour has lower cost. If a leaf task determines its tour is a better
tour, then it will also update the best tour. Although all of the actual computation can

Table 6.7 Run-Times of the Three Serial
Implementations of Tree Search (times in seconds)

Recursive First Iterative Second Iterative

30.5 29.2 32.9
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be considered to be carried out by the tree node tasks, we need to keep in mind that
the best tour data structure requires additional communication that is not explicit in
the tree edges. Thus, it’s convenient to add an additional task that corresponds to the
best tour. It “sends” data to every tree node task, and receives data from some of the
leaves. This latter view is convenient for shared-memory, but not so convenient for
distributed-memory.

A natural way to agglomerate and map the tasks is to assign a subtree to each
thread or process, and have each thread/process carry out all the tasks in its subtree.
For example, if we have three threads or processes, as shown earlier in Figure 6.10,
we might map the subtree rooted at 0→ 1 to thread/process 0, the subtree rooted at
0→ 2 to thread/process 1, and the subtree rooted at 0→ 3 to thread/process 2.

Mapping details
There are many possible algorithms for identifying which subtrees we assign to the
processes or threads. For example, one thread or process could run the last version
of serial depth-first search until the stack stores one partial tour for each thread or
process. Then it could assign one tour to each thread or process. The problem with
depth-first search is that we expect a subtree whose root is deeper in the tree to require
less work than a subtree whose root is higher up in the tree, so we would probably
get better load balance if we used something like breadth-first search to identify the
subtrees.

As the name suggests, breadth-first search searches as widely as possible in the
tree before going deeper. So if, for example, we carry out a breadth-first search until
we reach a level of the tree that has at least thread count or comm sz nodes, we can
then divide the nodes at this level among the threads or processes. See Exercise 6.18
for implementation details.

The best tour data structure
On a shared-memory system, the best tour data structure can be shared. In this setting,
the Feasible function can simply examine the data structure. However, updates to
the best tour will cause a race condition, and we’ll need some sort of locking to
prevent errors. We’ll discuss this in more detail when we implement the parallel
version.

In the case of a distributed-memory system, there are a couple of choices that we
need to make about the best tour. The simplest option would be to have the processes
operate independently of each other until they have completed searching their sub-
trees. In this setting, each process would store its own local best tour. This local best
tour would be used by the process in Feasible and updated by the process each time
it calls Update best tour. When all the processes have finished searching, they can
perform a global reduction to find the tour with the global least cost.

This approach has the virtue of simplicity, but it also suffers from the problem
that it’s entirely possible for a process to spend most or all of its time searching
through partial tours that couldn’t possibly lead to a global best tour. Thus, we should
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probably try using an approach that makes the current global best tour available to all
the processes. We’ll take a look at details when we discuss the MPI implementation.

Dynamic mapping of tasks
A second issue we should consider is the problem of load imbalance. Although the
use of breadth-first search ensures that all of our subtrees have approximately the
same number of nodes, there is no guarantee that they all have the same amount
of work. It’s entirely possible that one process or thread will have a subtree con-
sisting of very expensive tours, and, as a consequence, it won’t need to search very
deeply into its assigned subtree. However, with our current, static mapping of tasks to
threads/processes, this one thread or process will simply have to wait until the other
threads/processes are done.

An alternative is to implement a dynamic mapping scheme. In a dynamic scheme,
if one thread/process runs out of useful work, it can obtain additional work from
another thread/process. In our final implementation of serial depth-first search, each
stack record contains a partial tour. With this data structure a thread or process can
give additional work to another thread/process by dividing the contents of its stack.
This might at first seem to have the potential for causing problems with the program’s
correctness, since if we give part of one thread’s or one process’ stack to another,
there’s a good chance that the order in which the tree nodes will be visited will be
changed.

However, we’re already going to do this; when we assign different subtrees to
different threads/processes, the order in which the tree nodes are visited is no longer
the serial depth-first ordering. In fact, in principle, there’s no reason to visit any node
before any other node as long as we make sure we visit “ancestors” before “descen-
dants.” But this isn’t a problem since a partial tour isn’t added to the stack until after
all its ancestors have been visited. For example, in Figure 6.10 the node consisting
of the tour 0→ 2→ 1 will be pushed onto the stack when the node consisting of the
tour 0→ 2 is the currently active node, and consequently the two nodes won’t be on
the stack simultaneously. Similarly, the parent of 0→ 2, the root of the tree, 0, is no
longer on the stack when 0→ 2 is visited.

A second alternative for dynamic load balancing—at least in the case of shared
memory—would be to have a shared stack. However, we couldn’t simply dispense
with the local stacks. If a thread needed to access the shared stack every time it pushed
or popped, there would be a tremendous amount of contention for the shared stack
and the performance of the program would probably be worse than a serial program.
This is exactly what happened when we parallelized the reduced n-body solver with
mutexes/locks protecting the calculations of the total forces on the various particles.
If every call to Push or Pop formed a critical section, our program would grind to
nearly a complete halt. Thus, we would want to retain local stacks for each thread,
with only occasional accesses to the shared stack. We won’t pursue this alternative.
See Programming Assignment 6.7 for further details.
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6.2.6 A static parallelization of tree search using pthreads
In our static parallelization, a single thread uses breadth-first search to generate
enough partial tours so that each thread gets at least one partial tour. Then each
thread takes its partial tours and runs iterative tree search on them. We can use the
pseudocode shown in Program 6.7 on each thread. Note that most of the function
calls—for example, Best tour, Feasible, Add city—need to access the adjacency
matrix representing the digraph, so all the threads will need to access the digraph.
However, since these are only read accesses, this won’t result in a race condition or
contention among the threads.

There are only four potential differences between this pseudocode and the
pseudocode we used for the second iterative serial implementation:

. The use of my stack instead of stack; since each thread has its own, private stack,
we use my stack as the identifier for the stack object instead of stack.. Initialization of the stack.. Implementation of the Best tour function.. Implementation of the Update best tour function.

In the serial implementation, the stack is initialized by pushing the partial tour con-
sisting only of the hometown onto the stack. In the parallel version we need to
generate at least thread count partial tours to distribute among the threads. As
we discussed earlier, we can use breadth-first search to generate a list of at least
thread count tours by having a single thread search the tree until it reaches a level
with at least thread count tours. (Note that this implies that the number of threads
should be less than (n− 1)! , which shouldn’t be a problem). Then the threads can

Partition tree(my rank, my stack);

while (!Empty(my stack)) {
curr tour = Pop(my stack);
if (City count(curr tour) == n) {

if (Best tour(curr tour)) Update best tour(curr tour);
} else {

for (city = n−1; city >= 1; city−−)
if (Feasible(curr tour, city)) {

Add city(curr tour, city);
Push copy(my stack, curr tour);
Remove last city(curr tour)

}

}

Free tour(curr tour);
}

Program 6.7: Pseudocode for a Pthreads implementation of a statically parallelized
solution to TSP
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use a block partition to divide these tours among themselves and push them onto
their private stacks. Exercise 6.18 looks into the details.

To implement the Best tour function, a thread should compare the cost of its
current tour with the cost of the global best tour. Since multiple threads may be simul-
taneously accessing the global best cost, it might at first seem that there will be a race
condition. However, the Best tour function only reads the global best cost, so there
won’t be any conflict with threads that are also checking the best cost. If a thread is
updating the global best cost, then a thread that is just checking it will either read the
old value or the new, updated value. While we would prefer that it get the new value,
we can’t insure this without using some very costly locking strategy. For example,
threads wanting to execute Best tour or Update best tour could wait on a sin-
gle mutex. This would insure that no thread is updating while another thread is only
checking, but would have the unfortunate side effect that only one thread could check
the best cost at a time. We could improve on this by using a read-write lock, but this
would have the side effect that the readers—the threads calling Best tour—would
all block while a thread updated the best tour. In principle, this doesn’t sound too bad,
but recall that in practice read-write locks can be quite slow. So it seems pretty clear
that the “no contention” solution of possibly getting a best tour cost that’s out-of-date
is probably better, as the next time the thread calls Best tour, it will get the updated
value of the best tour cost.

On the other hand, we call Update best tour with the intention of writing to
the best tour structure, and this clearly can cause a race condition if two threads
call it simultaneously. To avoid this problem, we can protect the body of the
Update best tour function with a mutex. This isn’t enough, however; between the
time a thread completes the test in Best tour and the time it obtains the lock in
Update best tour, another thread may have obtained the lock and updated the best
tour cost, which now may be less than the best tour cost that the first thread found in
Best tour. Thus, correct pseudocode for Update best tour should look something
like this:

pthread mutex lock(best tour mutex);
/∗ We’ve already checked Best tour, but we need to check it

again ∗/
if (Best tour(tour))

Replace old best tour with tour;
pthread mutex unlock(best tour mutex).

This may seem wasteful, but if updates to the best tour are infrequent, then most of
the time Best tour will return false and it will only be rarely necessary to make
the “double” call.

6.2.7 A dynamic parallelization of tree search using pthreads
If the initial distribution of subtrees doesn’t do a good job of distributing the work
among the threads, the static parallelization provides no means of redistributing work.
The threads with “small” subtrees will finish early, while the threads with large sub-
trees will continue to work. It’s not difficult to imagine that one thread gets the lion’s
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share of the work because the edges in its initial tours are very cheap, while the edges
in the other threads’ initial tours are very expensive. To address this issue, we can try
to dynamically redistribute the work as the computation proceeds.

To do this, we can replace the test !Empty(my stack) controlling execution of
the while loop with more complex code. The basic idea is that when a thread runs out
of work—that is, !Empty(my stack) becomes false—instead of immediately exiting
the while loop, the thread waits to see if another thread can provide more work. On
the other hand, if a thread that still has work in its stack finds that there is at least one
thread without work, and its stack has at least two tours, it can “split” its stack and
provide work for one of the threads.

Pthreads condition variables provide a natural way to implement this. When a
thread runs out of work it can call pthread cond wait and go to sleep. When a
thread with work finds that there is at least one thread waiting for work, after splitting
its stack, it can call pthread cond signal. When a thread is awakened it can take
one of the halves of the split stack and return to work.

This idea can be extended to handle termination. If we maintain a count of
the number of threads that are in pthread cond wait, then when a thread whose
stack is empty finds that thread count− 1 threads are already waiting, it can call
pthread cond broadcast and as the threads awaken, they’ll see that all the threads
have run out of work and quit.

Termination
Thus, we can use the pseudocode shown in Program 6.8 for a Terminated function
that would be used instead of Empty for the while loop implementing tree search.

There are several details that we should look at more closely. Notice that the code
executed by a thread before it splits its stack is fairly complicated. In Lines 1–2 the
thread

. checks that it has at least two tours in its stack,. checks that there are threads waiting, and. checks whether the new stack variable is NULL.

The reason for the check that the thread has enough work should be clear: if there
are fewer than two records on the thread’s stack, “splitting” the stack will either do
nothing or result in the active thread’s trading places with one of the waiting threads.

It should also be clear that there’s no point in splitting the stack if there aren’t
any threads waiting for work. Finally, if some thread has already split its stack, but
a waiting thread hasn’t retrieved the new stack, that is, new stack != NULL, then
it would be disastrous to split a stack and overwrite the existing new stack. Note
that this makes it essential that after a thread retrieves new stack by, say, copying
new stack into its private my stack variable, the thread must set new stack to NULL.

If all three of these conditions hold, then we can try splitting our stack. We
can acquire the mutex that protects access to the objects controlling termination
(threads in cond wait, new stack, and the condition variable). However, the
condition

threads in cond wait > 0 && new stack == NULL
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1 if (my stack size >= 2 && threads in cond wait > 0 &&
2 new stack == NULL) {
3 lock term mutex;
4 if (threads in cond wait > 0 && new stack == NULL) {
5 Split my stack creating new stack;
6 pthread cond signal(&term cond var);
7 }

8 unlock term mutex;
9 return 0; /∗ Terminated = false; don’t quit ∗/

10 } else if (!Empty(my stack)) /∗ Keep working ∗/
11 return 0; /∗ Terminated = false; don’t quit ∗/
12 } else { /∗ My stack is empty ∗/
13 lock term mutex;
14 if (threads in cond wait == thread count−1)
15 /∗ Last thread running ∗/
16 threads in cond wait++;
17 pthread cond broadcast(&term cond var);
18 unlock term mutex;
19 return 1; /∗ Terminated = true; quit ∗/
20 } else { /∗ Other threads still working, wait for work ∗/
21 threads in cond wait++;
22 while (pthread cond wait(&term cond var, &term mutex) != 0);
23 /∗ We’ve been awakened ∗/
24 if (threads in cond wait < thread count) { /∗ We got work ∗/
25 my stack = new stack;
26 new stack = NULL;
27 threads in cond wait−−;
28 unlock term mutex;
29 return 0; /∗ Terminated = false ∗/
30 } else { /∗ All threads done ∗/
31 unlock term mutex;
32 return 1; /∗ Terminated = true; quit ∗/
33 }

34 } /∗ else wait for work ∗/
35 } /∗ else my stack is empty ∗/

Program 6.8: Pseudocode for Pthreads Terminated function

can change between the time we start waiting for the mutex and the time we actually
acquire it, so as with Update best tour, we need to confirm that this condition is
still true after acquiring the mutex (Line 4). Once we’ve verified that these conditions
still hold, we can split the stack, awaken one of the waiting threads, unlock the mutex,
and return to work.

If the test in Lines 1 and 2 is false, we can check to see if we have any work at
all—that is, our stack is nonempty. If it is, we return to work. If it isn’t, we’ll start the
termination sequence by waiting for and acquiring the termination mutex in Line 13.
Once we’ve acquired the mutex, there are two possibilities:



6.2 Tree Search 313

. We’re the last thread to enter the termination sequence, that is,
threads in cond wait == thread count−1.. Other threads are still working.

In the first case, we know that since all the other threads have run out of work, and
we have also run out of work, the tree search should terminate. We therefore sig-
nal all the other threads by calling pthread cond broadcast and returning true.
Before executing the broadcast, we increment threads in cond wait, even though
the broadcast is telling all the threads to return from the condition wait. The rea-
son is that threads in cond wait is serving a dual purpose: When it’s less than
thread count, it tells us how many threads are waiting. However, when it’s equal to
thread count, it tells us that all the threads are out of work, and it’s time to quit.

In the second case—other threads are still working—we call pthread cond wait
(Line 22) and wait to be awakened. Recall that it’s possible that a thread
could be awakened by some event other than a call to pthread cond signal or
pthread cond broadcast. So, as usual, we put the call to pthread cond wait in
a while loop, which will immediately call pthread cond wait again if some other
event (return value not 0) awakens the thread.

Once we’ve been awakened, there are also two cases to consider:

. threads in cond wait < thread count. threads in cond wait == thread count

In the first case, we know that some other thread has split its stack and created
more work. We therefore copy the newly created stack into our private stack,
set the new stack variable to NULL, and decrement threads in cond wait (i.e.,
Lines 25–27). Recall that when a thread returns from a condition wait, it obtains
the mutex associated with the condition variable, so before returning, we also unlock
the mutex (i.e., Line 28). In the second case, there’s no work left, so we unlock the
mutex and return true.

In the actual code, we found it convenient to group the termination variables
together into a single struct. Thus, we defined something like

typedef struct {
my stack t new stack;
int threads in cond wait;
pthread cond t term cond var;
pthread mutex t term mutex;

} term struct;
typedef term struct∗ term t;

term t term; // global variable

and we defined a couple of functions, one for initializing the term variable and one
for destroying/freeing the variable and its members.

Before discussing the function that splits the stack, note that it’s possible that a
thread with work can spend a lot of time waiting for term mutex before being able
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to split its stack. Other threads may be either trying to split their stacks, or prepar-
ing for the condition wait. If we suspect that this is a problem, Pthreads provides a
nonblocking alternative to pthread mutex lock called pthread mutex trylock:

int pthread mutex trylock(
pthread mutex t∗ mutex p /∗ in/out ∗/);

This function attempts to acquire mutex p. However, if it’s locked, instead of wait-
ing, it returns immediately. The return value will be zero if the calling thread has
successfully acquired the mutex, and nonzero if it hasn’t. As an alternative to waiting
on the mutex before splitting its stack, a thread can call pthread mutex trylock. If
it acquires term mutex, it can proceed as before. If not, it can just return. Presumably
on a subsequent call it can successfully acquire the mutex.

Splitting the stack
Since our goal is to balance the load among the threads, we would like to insure that
the amount of work in the new stack is roughly the same as the amount remaining in
the original stack. We have no way of knowing in advance of searching the subtree
rooted at a partial tour how much work is actually associated with the partial tour,
so we’ll never be able to guarantee an equal division of work. However, we can use
the same strategy that we used in our original assignment of subtrees to threads: that
the subtrees rooted at two partial tours with the same number of cities have identical
structures. Since on average two partial tours with the same number of cities are
equally likely to lead to a “good” tour (and hence more work), we can try splitting
the stack by assigning the tours on the stack on the basis of their numbers of edges.
The tour with the least number of edges remains on the original stack, the tour with
the next to the least number of edges goes to the new stack, the tour with the next
number of edges remains on the original, and so on.

This is fairly simple to implement, since the tours on the stack have an increasing
number of edges. That is, as we proceed from the bottom of the stack to the top of
the stack, the number of edges in the tours increases. This is because when we push a
new partial tour with k edges onto the stack, the tour that’s immediately “beneath” it
on the stack either has k edges or k− 1 edges. We can implement the split by starting
at the bottom of the stack, and alternately leaving partial tours on the old stack and
pushing partial tours onto the new stack, so tour 0 will stay on the old stack, tour
1 will go to the new stack, tour 2 will stay on the old stack, and so on. If the stack
is implemented as an array of tours, this scheme will require that the old stack be
“compressed” so that the gaps left by removing alternate tours are eliminated. If the
stack is implemented as a linked list of tours, compression won’t be necessary.

This scheme can be further refined by observing that partial tours with lots of
cities won’t provide much work, since the subtrees that are rooted at these trees are
very small. We could add a “cutoff size” and not reassign a tour unless its number of
cities was less than the cutoff. In a shared-memory setting with an array-based stack,
reassigning a tour when a stack is split won’t increase the cost of the split, since the
tour (which is a pointer) will either have to be copied to the new stack or a new
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Table 6.8 Run-Times of Pthreads Tree-Search Programs
(times in seconds)

First Problem Second Problem

Threads Serial Static Dynamic Serial Static Dynamic

1 32.9 32.7 34.7 (0) 26.0 25.8 27.5 (0)
2 27.9 28.9 (7) 25.8 19.2 (6)
4 25.7 25.9 (47) 25.8 9.3 (49)
8 23.8 22.4 (180) 24.0 5.7 (256)

location in the old stack. We’ll defer exploration of this alternative to Programming
Assignment 6.6.

6.2.8 Evaluating the Pthreads tree-search programs
Table 6.8 shows the performance of the two Pthreads programs on two fifteen-city
problems. The “Serial” column gives the run-time of the second iterative solution—
the solution that pushes a copy of each new tour onto the stack. For reference, the
first problem in Table 6.8 is the same as the problem the three serial solutions were
tested with in Table 6.7, and both the Pthreads and serial implementations were tested
on the same system. Run-times are in seconds, and the numbers in parentheses next
to the run-times of the program that uses dynamic partitioning give the total number
of times the stacks were split.

From these numbers, it’s apparent that different problems can result in radically
different behaviors. For example, the program that uses static partitioning generally
performs better on the first problem than the program that uses dynamic partitioning.
However, on the second problem, the performance of the static program is essentially
independent of the number of threads, while the dynamic program obtains excellent
performance. In general, it appears that the dynamic program is more scalable than
the static program.

As we increase the number of threads, we would expect that the size of the
local stacks will decrease, and hence threads will run out of work more often. When
threads are waiting, other threads will split their stacks, so as the number of threads
is increased, the total number of stack splits should increase. Both problems confirm
this prediction.

It should be noted that if the input problem has more than one possible solution—
that is, different tours with the same minimum cost—then the results of both of
the programs are nondeterministic. In the static program, the sequence of best tours
depends on the speed of the threads, and this sequence determines which tree nodes
are examined. In the dynamic program, we also have nondeterminism because dif-
ferent runs may result in different places where a thread splits its stack and variation
in which thread receives the new work. This can also result in run-times, especially
dynamic run-times, that are highly variable.
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6.2.9 Parallelizing the tree-search programs using OpenMP
The issues involved in implementing the static and dynamic parallel tree-search
programs using OpenMP are the same as the issues involved in implementing the
programs using Pthreads.

There are almost no substantive differences between a static implementation that
uses OpenMP and one that uses Pthreads. However, a couple of points should be
mentioned:

1. When a single thread executes some code in the Pthreads version, the test

if (my rank == whatever)

can be replaced by the OpenMP directive

# pragma omp single

This will insure that the following structured block of code will be executed by
one thread in the team, and the other threads in the team will wait in an implicit
barrier at the end of the block until the executing thread is finished.

When whatever is 0 (as it is in each test in the Pthreads program), the test can
also be replaced by the OpenMP directive

# pragma omp master

This will insure that thread 0 executes the following structured block of code.
However, the master directive doesn’t put an implicit barrier at the end of the
block, so it may be necessary to also add a barrier directive after a structured
block that has been modified by a master directive.

2. The Pthreads mutex that protects the best tour can be replaced by a single
critical directive placed either inside the Update best tour function or imme-
diately before the call to Update best tour. This is the only potential source of
a race condition after the distribution of the initial tours, so the simple critical
directive won’t cause a thread to block unnecessarily.

The dynamically load-balanced Pthreads implementation depends heavily on
Pthreads condition variables, and OpenMP doesn’t provide a comparable object. The
rest of the Pthreads code can be easily converted to OpenMP. In fact, OpenMP even
provides a nonblocking version of omp set lock. Recall that OpenMP provides a
lock object omp lock t and the following functions for acquiring and relinquishing
the lock, respectively:

void omp set lock(omp lock t∗ lock p /∗ in/out ∗/);
void omp unset lock(omp lock t∗ lock p /∗ in/out ∗/);

It also provides the function

int omp test lock(omp lock t∗ lock p /∗ in/out ∗/);
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which is analogous to pthread mutex trylock; it attempts to acquire the lock
∗lock p, and if it succeeds it returns true (or nonzero). If the lock is being used
by some other thread, it returns immediately with return value false (or zero).

If we examine the pseudocode for the Pthreads Terminated function in
Program 6.8, we see that in order to adapt the Pthreads version to OpenMP, we need
to emulate the functionality of the Pthreads function calls

pthread cond signal(&term cond var);
pthread cond broadcast(&term cond var);
pthread cond wait(&term cond var, &term mutex);

in Lines 6, 17, and 22, respectively.
Recall that a thread that has entered the condition wait by calling

pthread cond wait(&term cond var, &term mutex);

is waiting for either of two events:

. Another thread has split its stack and created work for the waiting thread.. All of the threads have run out of work.

Perhaps the simplest solution to emulating a condition wait in OpenMP is to use
busy-waiting. Since there are two conditions a waiting thread should test for, we can
use two different variables in the busy-wait loop:

/∗ Global variables ∗/
int awakened thread = −1;
int work remains = 1; /∗ true ∗/
. . .
while (awakened thread != my rank && work remains);

Initialization of the two variables is crucial: If awakened thread has the value of
some thread’s rank, that thread will exit immediately from the while, but there may
be no work available. Similarly, if work remains is initialized to 0, all the threads
will exit the while loop immediately and quit.

Now recall that when a thread enters a Pthreads condition wait, it relinquishes the
mutex associated with the condition variable so that another thread can also enter the
condition wait or signal the waiting thread. Thus, we should relinquish the lock used
in the Terminated function before starting the while loop.

Also recall that when a thread returns from a Pthreads condition wait, it reacquires
the mutex associated with the condition variable. This is especially important in this
setting since if the awakened thread has received work, it will need to access the
shared data structures storing the new stack. Thus, our complete emulated condition
wait should look something like this:

/∗ Global vars ∗/
int awakened thread = −1;
work remains = 1; /∗ true ∗/
. . .
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omp unset lock(&term lock);
while (awakened thread != my rank && work remains);
omp set lock(&term lock);

If you recall the discussion of busy-waiting in Section 4.5 and Exercise 4.3 of
Chapter 4, you may be concerned about the possibility that the compiler might reorder
the code around the busy-wait loop. The compiler should not reorder across calls to
omp set lock or omp unset lock. However, the updates to the variables could be
reordered, so if we’re going to be using compiler optimization, we should declare
both with the volatile keyword.

Emulating the condition broadcast is straightforward: When a thread determines
that there’s no work left (Line 14 in Program 6.8), then the condition broadcast
(Line 17) can be replaced with the assignment

work remains = 0; /∗ Assign false to work remains ∗/

The “awakened” threads can check if they were awakened by some thread’s setting
work remains to false, and, if they were, return from Terminated with the value
true.

Emulating the condition signal requires a little more work. The thread that has
split its stack needs to choose one of the sleeping threads and set the variable
awakened thread to the chosen thread’s rank. Thus, at a minimum, we need to keep
a list of the ranks of the sleeping threads. A simple way to do this is to use a shared
queue of thread ranks. When a thread runs out of work, it enqueues its rank before
entering the busy-wait loop. When a thread splits its stack, it can choose the thread
to awaken by dequeuing the queue of waiting threads:

got lock = omp test lock(&term lock);
if (got lock != 0) {

if (waiting threads > 0 && new stack == NULL) {
Split my stack creating new stack;
awakened thread = Dequeue(term queue);

}

omp unset lock(&term lock);
}

The awakened thread needs to reset awakened thread to −1 before it returns from
its call to the Terminated function.

Note that there is no danger that some other thread will be awakened before the
awakened thread reacquires the lock. As long as new stack is not NULL, no thread
will attempt to split its stack, and hence no thread will try to awaken another thread.
So if several threads call Terminated before the awakened thread reacquires the
lock, they’ll either return if their stacks are nonempty, or they’ll enter the wait if their
stacks are empty.

6.2.10 Performance of the OpenMP implementations
Table 6.9 shows run-times of the two OpenMP implementations on the same two
fifteen-city problems that we used to test the Pthreads implementations. The programs
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Table 6.9 Performance of OpenMP and Pthreads Implementations of Tree
Search (times in seconds)

First Problem Second Problem

Static Dynamic Static Dynamic

Th OMP Pth OMP Pth OMP Pth OMP Pth

1 32.5 32.7 33.7 (0) 34.7 (0) 25.6 25.8 26.6 (0) 27.5 (0)
2 27.7 27.9 28.0 (6) 28.9 (7) 25.6 25.8 18.8 (9) 19.2 (6)
4 25.4 25.7 33.1 (75) 25.9 (47) 25.6 25.8 9.8 (52) 9.3 (49)
8 28.0 23.8 19.2 (134) 22.4 (180) 23.8 24.0 6.3 (163) 5.7 (256)

were also run on the same system we used for the Pthreads and serial tests. For ease
of comparison, we also show the Pthreads run-times. Run-times are in seconds and
the numbers in parentheses show the total number of times stacks were split in the
dynamic implementations.

For the most part, the OpenMP implementations are comparable to the Pthreads
implementations. This isn’t surprising since the system on which the programs
were run has eight cores, and we wouldn’t expect busy-waiting to degrade overall
performance unless we were using more threads than cores.

There are two notable exceptions for the first problem. The performance of the
static OpenMP implementation with eight threads is much worse than the Pthreads
implementation, and the dynamic implementation with four threads is much worse
than the Pthreads implementation. This could be a result of the nondeterminism of
the programs, but more detailed profiling will be necessary to determine the cause
with any certainty.

6.2.11 Implementation of tree search using MPI
and static partitioning

The vast majority of the code used in the static parallelizations of tree search using
Pthreads and OpenMP is taken straight from the second implementation of serial,
iterative tree search. In fact, the only differences are in starting the threads, the ini-
tial partitioning of the tree, and the Update best tour function. We might therefore
expect that an MPI implementation would also require relatively few changes to the
serial code, and this is, in fact, the case.

There is the usual problem of distributing the input data and collecting the results.
In order to construct a complete tour, a process will need to choose an edge into
each vertex and out of each vertex. Thus, each tour will require an entry from each
row and each column for each city that’s added to the tour, so it would clearly be
advantageous for each process to have access to the entire adjacency matrix. Note
that the adjacency matrix is going to be relatively small. For example, even if we
have 100 cities, it’s unlikely that the matrix will require more than 80,000 bytes of
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storage, so it makes sense to simply read in the matrix on process 0 and broadcast it
to all the processes.

Once the processes have copies of the adjacency matrix, the bulk of the tree search
can proceed as it did in the Pthreads and OpenMP implementations. The principal
differences lie in

. partitioning the tree,. checking and updating the best tour, and. after the search has terminated, making sure that process 0 has a copy of the best
tour for output.

We’ll discuss each of these in turn.

Partitioning the tree
In the Pthreads and OpenMP implementations, thread 0 uses breadth-first search to
search the tree until there are at least thread count partial tours. Each thread then
determines which of these initial partial tours it should get and pushes its tours onto its
local stack. Certainly MPI process 0 can also generate a list of comm sz partial tours.
However, since memory isn’t shared, it will need to send the initial partial tours to
the appropriate process. We could do this using a loop of sends, but distributing the
initial partial tours looks an awful lot like a call to MPI Scatter. In fact, the only
reason we can’t use MPI Scatter is that the number of initial partial tours may not
be evenly divisible by comm sz. When this happens, process 0 won’t be sending the
same number of tours to each process, and MPI Scatter requires that the source of
the scatter send the same number of objects to each process in the communicator.

Fortunately, there is a variant of MPI Scatter, MPI Scatterv, which can be used
to send different numbers of objects to different processes. First recall the syntax of
MPI Scatter:

int MPI Scatter(
void sendbuf /∗ in ∗/,
int sendcount /∗ in ∗/,
MPI Datatype sendtype /∗ in ∗/,
void∗ recvbuf /∗ out ∗/,
int recvcount /∗ in ∗/,
MPI Datatype recvtype /∗ in ∗/,
int root /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

Process root sends sendcount objects of type sendtype from sendbuf to each pro-
cess in comm. Each process in comm receives recvcount objects of type recvtype
into recvbuf. Most of the time, sendtype and recvtype are the same and
sendcount and recvcount are also the same. In any case, it’s clear that the root
process must send the same number of objects to each process.

MPI Scatterv, on the other hand, has syntax

int MPI Scatterv(
void∗ sendbuf /∗ in ∗/,
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int∗ sendcounts /∗ in ∗/,
int∗ displacements /∗ in ∗/,
MPI Datatype sendtype /∗ in ∗/,
void∗ recvbuf /∗ out ∗/,
int recvcount /∗ in ∗/,
MPI Datatype recvtype /∗ in ∗/,
int root /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The single sendcount argument in a call to MPI Scatter is replaced by two array
arguments: sendcounts and displacements. Both of these arrays contain comm sz
elements: sendcounts[q] is the number of objects of type sendtype being sent to
process q. Furthermore, displacements[q] specifies the start of the block that is
being sent to process q. The displacement is calculated in units of type sendtype.
So, for example, if sendtype is MPI INT, and sendbuf has type int∗, then the data
that is sent to process q will begin in location

sendbuf + displacements[q]

In general, displacements[q] specifies the offset into sendbuf of the data that will
go to process q. The “units” are measured in blocks with extent equal to the extent of
sendtype.

Similarly, MPI Gatherv generalizes MPI Gather:

int MPI Gatherv(
void∗ sendbuf /∗ in ∗/,
int sendcount /∗ in ∗/,
MPI Datatype sendtype /∗ in ∗/,
void∗ recvbuf /∗ out ∗/,
int∗ recvcounts /∗ in ∗/,
int∗ displacements /∗ in ∗/,
MPI Datatype recvtype /∗ in ∗/,
int root /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

Maintaining the best tour
As we observed in our earlier discussion of parallelizing tree search, having each
process use its own best tour is likely to result in a lot of wasted computation since
the best tour on one process may be much more costly than most of the tours on
another process (see Exercise 6.21). Therefore, when a process finds a new best tour,
it should send it to the other processes.

First note that when a process finds a new best tour, it really only needs to send its
cost to the other processes. Each process only makes use of the cost of the current best
tour when it calls Best tour. Also, when a process updates the best tour, it doesn’t
care what the actual cities on the former best tour were; it only cares that the cost of
the former best tour is greater than the cost of the new best tour.

During the tree search, when one process wants to communicate a new best cost
to the other processes, it’s important to recognize that we can’t use MPI Bcast,
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for recall that MPI Bcast is blocking and every process in the communicator must
call MPI Bcast. However, in parallel tree search the only process that will know that
a broadcast should be executed is the process that has found a new best cost. If it tries
to use MPI Bcast, it will probably block in the call and never return, since it will be
the only process that calls it. We therefore need to arrange that the new tour is sent in
such a way that the sending process won’t block indefinitely.

MPI provides several options. The simplest is to have the process that finds a new
best cost use MPI Send to send it to all the other processes:

for (dest = 0; dest < comm sz; dest++)
if (dest != my rank)

MPI Send(&new best cost, 1, MPI INT, dest, NEW COST TAG,
comm);

Here, we’re using a special tag defined in our program, NEW COST TAG. This will tell
the receiving process that the message is a new cost–as opposed to some other type
of message–for example, a tour.

The destination processes can periodically check for the arrival of new best tour
costs. We can’t use MPI Recv to check for messages since it’s blocking; if a process
calls

MPI Recv(&received cost, 1, MPI INT, MPI ANY SOURCE, NEW COST TAG,
comm, &status);

the process will block until a matching message arrives. If no message arrives—for
example, if no process finds a new best cost—the process will hang. Fortunately,
MPI provides a function that only checks to see if a message is available; it doesn’t
actually try to receive a message. It’s called MPI Iprobe, and its syntax is

int MPI Iprobe(
int source /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm comm /∗ in ∗/,
int∗ msg avail p /∗ out ∗/,
MPI Status∗ status p /∗ out ∗/);

It checks to see if a message from process rank source in communicator comm
and with tag tag is available. If such a message is available, ∗msg avail p will be
assigned the value true and the members of ∗status p will be assigned the appro-
priate values. For example, status p−>MPI SOURCE will be assigned the rank of the
source of the message that’s been received. If no message is available, ∗msg avail p
will be assigned the value false. The source and tag arguments can be the wildcards
MPI ANY SOURCE and MPI ANY TAG, respectively. So, to check for a message with a
new cost from any process, we can call

MPI Iprobe(MPI ANY SOURCE, NEW COST TAG, comm, &msg avail, &status);
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MPI Iprobe(MPI ANY SOURCE, NEW COST TAG, comm, &msg avail,
&status);

while (msg avail) {
MPI Recv(&received cost, 1, MPI INT, status.MPI SOURCE,

NEW COST TAG, comm, MPI STATUS IGNORE);
if (received cost < best tour cost)

best tour cost = received cost;
MPI Iprobe(MPI ANY SOURCE, NEW COST TAG, comm, &msg avail,
&status);

} /∗ while ∗/

Program 6.9: MPI code to check for new best tour costs

If msg avail is true, then we can receive the new cost with a call to MPI Recv:

MPI Recv(&received cost, 1, MPI INT, status.MPI SOURCE,
NEW COST TAG, comm, MPI STATUS IGNORE);

A natural place to do this is in the Best tour function. Before checking whether our
new tour is the best tour, we can check for new tour costs from other processes with
the code in Program 6.9.

This code will continue to receive messages with new costs as long as they’re
available. Each time a new cost is received that’s better than the current best cost, the
variable best tour cost will be updated.

Did you spot the potential problem with this scheme? If there is no buffering
available for the sender, then the loop of calls to MPI Send can cause the send-
ing process to block until a matching receive is posted. If all the other processes
have completed their searches, the sending process will hang. The loop of calls to
MPI Send is therefore unsafe.

There are a couple of alternatives provided by MPI: buffered sends and non-
blocking sends. We’ll discuss buffered sends here. See Exercise 6.22 for a discussion
of nonblocking operations in MPI.

Modes and Buffered Sends
MPI provides four modes for sends: standard, synchronous, ready, and buffered.
The various modes specify different semantics for the sending functions. The send
that we first learned about, MPI Send, is the standard mode send. With it, the MPI
implementation can decide whether to copy the contents of the message into its own
storage or to block until a matching receive is posted. Recall that in synchronous
mode, the send will block until a matching receive is posted. In ready mode, the send
is erroneous unless a matching receive is posted before the send is started. In buffered
mode, the MPI implementation must copy the message into local temporary storage if
a matching receive hasn’t been posted. The local temporary storage must be provided
by the user program, not the MPI implementation.
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Each mode has a different function: MPI Send, MPI Ssend, MPI Rsend, and
MPI Bsend, respectively, but the argument lists are identical to the argument lists
for MPI Send:

int MPI Xsend(
void∗ message /∗ in ∗/,
int message size /∗ in ∗/,
MPI Datatype message type /∗ in ∗/,
int dest /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The buffer that’s used by MPI Bsend must be turned over to the MPI implementation
with a call to MPI Buffer attach:

int MPI Buffer attach(
void∗ buffer /∗ in ∗/,
int buffer size /∗ in ∗/);

The buffer argument is a pointer to a block of memory allocated by the user program
and buffer size is its size in bytes. A previously “attached” buffer can be reclaimed
by the program with a call to

int MPI Buffer detach(
void∗ buf p /∗ out ∗/,
int∗ buf size p /∗ out ∗/);

The ∗buf p argument returns the address of the block of memory that was previously
attached, and ∗buf size p gives its size in bytes. A call to MPI Buffer detach will
block until all messages that have been stored in the buffer are transmitted. Note that
since buf p is an output argument, it should probably be passed in with the ampersand
operator. For example:

char buffer[1000];
char∗ buf;
int buf size;
. . .
MPI Buffer attach(buffer, 1000);
. . .
/∗ Calls to MPI Bsend ∗/
. . .
MPI Buffer detach(&buf, &buf size);

At any point in the program only one user-provided buffer can be attached, so
if there may be multiple buffered sends that haven’t been completed, we need to
estimate the amount of data that will be buffered. Of course, we can’t know this with
any certainty, but we do know that in any “broadcast” of a best tour, the process doing
the broadcast will make comm sz− 1 calls to MPI Bsend, and each of these calls will
send a single int. We can thus determine the size of the buffer needed for a single
broadcast. The amount of storage that’s needed for the data that’s transmitted can be
determined with a call to MPI Pack size:
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int MPI Pack size(
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Comm comm /∗ in ∗/,
int∗ size p /∗ out ∗/);

The output argument gives an upper bound on the number of bytes needed to store
the data in a message. This won’t be enough, however. Recall that in addition to the
data, a message stores information such as the destination, the tag, and the communi-
cator, so for each message there is some additional overhead. An upper bound on this
additional overhead is given by the MPI constant MPI BSEND OVERHEAD. For a single
broadcast, the following code determines the amount of storage needed:

int data size;
int message size;
int bcast buf size;

MPI Pack size(1, MPI INT, comm, &data size);
message size = data size + MPI BSEND OVERHEAD;
bcast buf size = (comm sz − 1)∗message size;

We should guess a generous upper bound on the number of broadcasts and multiply
that by bcast buf size to get the size of the buffer to attach.

Printing the best tour
When the program finishes, we’ll want to print out the actual tour as well as its cost,
so we do need to get the tour to process 0. It might at first seem that we could arrange
this by having each process store its local best tour—the best tour that it finds—and
when the tree search has completed, each process can check its local best tour cost
and compare it to the global best tour cost. If they’re the same, the process could send
its local best tour to process 0. There are, however, several problems with this. First,
it’s entirely possible that there are multiple “best” tours in the TSP digraph, tours that
all have the same cost, and different processes may find these different tours. If this
happens, multiple processes will try to send their best tours to process 0, and all but
one of the threads could hang in a call to MPI Send. A second problem is that it’s
possible that one or more processes never received the best tour cost, and they may
try to send a tour that isn’t optimal.

We can avoid these problems by having each process store its local best tour, but
after all the processes have completed their searches, they can all call MPI Allreduce
and the process with the global best tour can then send it to process 0 for output. The
following pseudocode provides some details:

struct {
int cost;
int rank;

} loc data, global data;

loc data.cost = Tour cost(loc best tour);
loc data.rank = my rank;
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MPI Allreduce(&loc data, &global data, 1, MPI 2INT, MPI MINLOC,
comm);

if (global data.rank == 0) return;
/∗ 0 already has the best tour ∗/

if (my rank == 0)
Receive best tour from process global data.rank;

else if (my rank == global data.rank)
Send best tour to process 0;

The key here is the operation we use in the call to MPI Allreduce. If we just used
MPI MIN, we would know what the cost of the global best tour was, but we wouldn’t
know who owned it. However, MPI provides a predefined operator, MPI MINLOC,
which operates on pairs of values. The first value is the value to be minimized—in our
setting, the cost of the tour—and the second value is the location of the minimum—in
our setting, the rank of the process that actually owns the best tour. If more than one
process owns a tour with minimum cost, the location will be the lowest of the ranks
of the processes that own a minimum cost tour. The input and the output buffers
in the call to MPI Allreduce are two-member structs. Since both the cost and the
rank are ints, both members are ints. Note that MPI also provides a predefined
type MPI 2INT for this type. When the call to MPI Allreduce returns, we have two
alternatives:

. If process 0 already has the best tour, we simply return.. Otherwise, the process owning the best tour sends it to process 0.

Unreceived messages
As we noted in the preceding discussion, it is possible that some messages won’t
be received during the execution of the parallel tree search. A process may finish
searching its subtree before some other process has found a best tour. This won’t
cause the program to print an incorrect result; the call to MPI Allreduce that finds
the process with the best tour won’t return until every process has called it, and some
process will have the best tour. Thus, it will return with the correct least-cost tour,
and process 0 will receive this tour.

However, unreceived messages can cause problems with the call to
MPI Buffer detach or the call to MPI Finalize. A process can hang in one of
these calls if it is storing buffered messages that were never received, so before we
attempt to shut down MPI, we can try to receive any outstanding messages by using
MPI Iprobe. The code is very similar to the code we used to check for new best tour
costs. See Program 6.9. In fact, the only messages that are not sent in collectives are
the “best tour” message sent to process 0, and the best tour cost broadcasts. The MPI
collectives will hang if some process doesn’t participate, so we only need to look for
unreceived best tours.

In the dynamically load-balanced code (which we’ll discuss shortly) there are
other messages, including some that are potentially quite large. To handle this situa-
tion, we can use the status argument returned by MPI Iprobe to determine the size
of the message and allocate additional storage as necessary (see Exercise 6.23).
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6.2.12 Implementation of tree search using MPI
and dynamic partitioning

In an MPI program that dynamically partitions the search tree, we can try to emu-
late the dynamic partitioning that we used in the Pthreads and OpenMP programs.
Recall that in those programs, before each pass through the main while loop in the
search function, a thread called a boolean-valued function called Terminated. When
a thread ran out of work—that is, its stack was empty—it went into a condition wait
(Pthreads) or a busy-wait (OpenMP) until it either received additional work or it was
notified that there was no more work. In the first case, it returned to searching for a
best tour. In the second case, it quit. A thread that had at least two records on its stack
would give half of its stack to one of the waiting threads.

Much of this can be emulated in a distributed-memory setting. When a process
runs out of work, there’s no condition wait, but it can enter a busy-wait, in which
it waits to either receive more work or notification that the program is terminat-
ing. Similarly, a process with work can split its stack and send work to an idle
process.

The key difference is that there is no central repository of information on which
processes are waiting for work, so a process that splits its stack can’t just dequeue
a queue of waiting processes or call a function such as pthread cond signal. It
needs to “know” a process that’s waiting for work so it can send the waiting process
more work. Thus, rather than simply going into a busy-wait for additional work or
termination, a process that has run out of work should send a request for work to
another process. If it does this, then, when a process enters the Terminated func-
tion, it can check to see if there’s a request for work from some other process. If
there is, and the process that has just entered Terminated has work, it can send
part of its stack to the requesting process. If there is a request, and the process has
no work available, it can send a rejection. Thus, when we have distributed-memory,
pseudocode for our Terminated function can look something like the pseudocode
shown in Program 6.10.

Terminated begins by checking on the number of tours that the process has
in its stack (Line 1); if it has at least two that are “worth sending,” it calls
Fulfill request (Line 2). Fulfill request checks to see if the process has
received a request for work. If it has, it splits its stack and sends work to the requesting
process. If it hasn’t received a request, it just returns. In either case, when it returns
from Fulfill request it returns from Terminated and continues searching.

If the calling process doesn’t have at least two tours worth sending, Terminated
calls Send rejects (Line 5), which checks for any work requests from other

processes and sends a “no work” reply to each requesting process. After this,
Terminated checks to see if the calling process has any work at all. If it does—that
is, if its stack isn’t empty—it returns and continues searching.

Things get interesting when the calling process has no work left (Line 9). If
there’s only one process in the communicator (comm sz= 1), then the process returns
from Terminated and quits. If there’s more than one process, then the process
“announces” that it’s out of work in Line 11. This is part of the implementation
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1 if (My avail tour count(my stack) >= 2) {
2 Fulfill request(my stack);
3 return false; /∗ Still more work ∗/
4 } else { /∗ At most 1 available tour ∗/
5 Send rejects(); /∗ Tell everyone who’s requested ∗/
6 /∗ work that I have none ∗/
7 if (!Empty stack(my stack)) {
8 return false; /∗ Still more work ∗/
9 } else { /∗ Empty stack ∗/

10 if (comm sz == 1) return true;
11 Out of work();
12 work request sent = false;
13 while (1) {
14 Clear msgs(); /∗ Msgs unrelated to work, termination ∗/
15 if (No work left()) {
16 return true; /∗ No work left. Quit ∗/
17 } else if (!work request sent) {
18 Send work request(); /∗ Request work from someone ∗/
19 work request sent = true;
20 } else {
21 Check for work(&work request sent, &work avail);
22 if (work avail) {
23 Receive work(my stack);
24 return false;
25 }

26 }

27 } /∗ while ∗/
28 } /∗ Empty stack ∗/
29 } /∗ At most 1 available tour ∗/

Program 6.10: Terminated function for a dynamically partitioned TSP solver that
uses MPI

of a “distributed termination detection algorithm,” which we’ll discuss shortly. For
now, let’s just note that the termination detection algorithm that we used with shared-
memory may not work, since it’s impossible to guarantee that a variable storing the
number of processes that have run out of work is up to date.

Before entering the apparently infinite while loop (Line 13), we set the variable
work request sent to false (Line 12). As its name suggests, this variable tells us
whether we’ve sent a request for work to another process; if we have, we know that
we should wait for work or a message saying “no work available” from that process
before sending out a request to another process.

The while(1) loop is the distributed-memory version of the OpenMP busy-wait
loop. We are essentially waiting until we either receive work from another process or
we receive word that the search has been completed.

When we enter the while(1) loop, we deal with any outstanding messages in
Line 14. We may have received updates to the best tour cost and we may have
received requests for work. It’s essential that we tell processes that have requested
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work that we have none, so that they don’t wait forever when there’s no work avail-
able. It’s also a good idea to deal with updates to the best tour cost, since this will
free up space in the sending process’ message buffer.

After clearing out outstanding messages, we iterate through the possibilities:

. The search has been completed, in which case we quit (Lines 15–16).. We don’t have an outstanding request for work, so we choose a process and send it
a request (Lines 17–19). We’ll take a closer look at the problem of which process
should be sent a request shortly.. We do have an outstanding request for work (Lines 21–25). So we check
whether the request has been fulfilled or rejected. If it has been fulfilled, we
receive the new work and return to searching. If we received a rejection, we set
work request sent to false and continue in the loop. If the request was neither
fulfilled nor rejected, we also continue in the while(1) loop.

Let’s take a closer look at some of these functions.

My avail tour count
The function My avail tour count can simply return the size of the process’ stack.
It can also make use of a “cutoff length.” When a partial tour has already visited
most of the cities, there will be very little work associated with the subtree rooted
at the partial tour. Since sending a partial tour is likely to be a relatively expensive
operation, it may make sense to only send partial tours with fewer than some cutoff
number of edges. In Exercise 6.24 we take a look at how such a cutoff affects the
overall run-time of the program.

Fulfill request
If a process has enough work so that it can usefully split its stack, it calls
Fulfill request (Line 2). Fulfill request uses MPI Iprobe to check for a
request for work from another process. If there is a request, it receives it, splits its
stack, and sends work to the requesting process. If there isn’t a request for work, the
process just returns.

Splitting the stack
A Split stack function is called by Fulfill request. It uses the same basic algo-
rithm as the Pthreads and OpenMP functions, that is, alternate partial tours with fewer
than split cutoff cities are collected for sending to the process that has requested
work. However, in the shared-memory programs, we simply copy the tours (which
are pointers) from the original stack to a new stack. Unfortunately, because of the
pointers involved in the new stack, such a data structure cannot be simply sent to
another process (see Exercise 6.25). Thus, the MPI version of Split stack packs the
contents of the new stack into contiguous memory and sends the block of contiguous
memory, which is unpacked by the receiver into a new stack.

MPI provides a function, MPI Pack, for packing data into a buffer of contiguous
memory. It also provides a function, MPI Unpack, for unpacking data from a buffer
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of contiguous memory. We took a brief look at them in Exercise 6.20 of Chapter 3.
Recall that their syntax is

int MPI Pack(
void∗ data to be packed /∗ in ∗/,
int to be packed count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
void∗ contig buf /∗ out ∗/,
int contig buf size /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
MPI Comm comm /∗ in ∗/);

int MPI Unpack(
void∗ contig buf /∗ in ∗/,
int contig buf size /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
void∗ unpacked data /∗ out ∗/,
int unpack count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

MPI Pack takes the data in data to be packed and packs it into contig buf. The
∗position p argument keeps track of where we are in contig buf. When the
function is called, it should refer to the first available location in contig buf
before data to be packed is added. When the function returns, it should refer
to the first available location in contig buf after data to be packed has been
added.

MPI Unpack reverses the process. It takes the data in contig buf and unpacks it
into unpacked data. When the function is called, ∗position p should refer to the
first location in contig buf that hasn’t been unpacked. When it returns, ∗position p
should refer to the next location in contig buf after the data that was just
unpacked.

As an example, suppose that a program contains the following definitions:

typedef struct {
int∗ cities; /∗ Cities in partial tour ∗/
int count; /∗ Number of cities in partial tour ∗/
int cost; /∗ Cost of partial tour ∗/

} tour struct;
typedef tour struct∗ tour t;

Then we can send a variable with type tour t using the following code:

void Send tour(tour t tour, int dest) {
int position = 0;

MPI Pack(tour−>cities, n+1, MPI INT, contig buf, LARGE,
&position, comm);

MPI Pack(&tour−>count, 1, MPI INT, contig buf, LARGE,
&position, comm);

MPI Pack(&tour−>cost, 1, MPI INT, contig buf, LARGE,
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&position, comm);
MPI Send(contig buf, position, MPI PACKED, dest, 0, comm);

} /∗ Send tour ∗/

Similarly, we can receive a variable of type tour t using the following code:

void Receive tour(tour t tour, int src) {
int position = 0;

MPI Recv(contig buf, LARGE, MPI PACKED, src, 0, comm,
MPI STATUS IGNORE);

MPI Unpack(contig buf, LARGE, &position, tour−>cities, n+1,
MPI INT, comm);

MPI Unpack(contig buf, LARGE, &position, &tour−>count, 1,
MPI INT, comm);

MPI Unpack(contig buf, LARGE, &position, &tour−>cost, 1,
MPI INT, comm);

} /∗ Receive tour ∗/

Note that the MPI datatype that we use for sending and receiving packed buffers is
MPI PACKED.

Send rejects
The Send rejects function (Line 5) is similar to the function that looks for new
best tours. It uses MPI Iprobe to search for messages that have requested work. Such
messages can be identified by a special tag value, for example, WORK REQ TAG. When
such a message is found, it’s received, and a reply is sent indicating that there is no
work available. Note that both the request for work and the reply indicating there is
no work can be messages with zero elements, since the tag alone informs the receiver
of the message’s purpose. Even though such messages have no content outside of the
envelope, the envelope does take space and they need to be received.

Distributed termination detection
The functions Out of work and No work left (Lines 11 and 15) implement the ter-
mination detection algorithm. As we noted earlier, an algorithm that’s modeled on the
termination detection algorithm we used in the shared-memory programs will have
problems. To see this, suppose each process stores a variable oow, which stores the
number of processes that are out of work. The variable is set to 0 when the program
starts. Each time a process runs out of work, it sends a message to all the other pro-
cesses saying it’s out of work so that all the processes will increment their copies
of oow. Similarly, when a process receives work from another process, it sends a
message to every process informing them of this, and each process will decrement
its copy of oow. Now suppose we have three process, and process 2 has work but
processes 0 and 1 have run out of work. Consider the sequence of events shown in
Table 6.10.

The error here is that the work sent from process 1 to process 0 is lost. The rea-
son is that process 0 receives the notification that process 2 is out of work before it
receives the notification that process 1 has received work. This may seem improbable,
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Table 6.10 Termination Events that Result in an Error

Time Process 0 Process 1 Process 2

0 Out of Work Out of Work Working
Notify 1, 2 Notify 0, 2 oow = 0
oow = 1 oow = 1

1 Send request to 1 Send Request to 2 Recv notify fr 1
oow = 1 oow = 1 oow = 1

2 oow = 1 Recv notify fr 0 Recv request fr 1
oow = 2 oow = 1

3 oow = 1 oow = 2 Send work to 1
oow = 0

4 oow = 1 Recv work fr 2 Recv notify fr 0
oow = 1 oow = 1

5 oow = 1 Notify 0 Working
oow = 1 oow = 1

6 oow = 1 Recv request fr 0 Out of work
oow = 1 Notify 0, 1

oow = 2
7 Recv notify fr 2 Send work to 0 Send request to 1

oow = 2 oow = 0 oow = 2
8 Recv 1st notify fr 1 Recv notify fr 2 oow = 2

oow = 3 oow = 1
9 Quit Recv request fr 2 oow = 2

oow = 1

but it’s not improbable that process 1 was, for example, interrupted by the operating
system and its message wasn’t transmitted until after the message from process 2 was
transmitted.

Although MPI guarantees that two messages sent from process A to process B
will, in general, be received in the order in which they were sent, it makes no guaran-
tee about the order in which messages will be received if they were sent by different
processes. This is perfectly reasonable in light of the fact that different processes will,
for various reasons, work at different speeds.

Distributed termination detection is a challenging problem, and much work has
gone into developing algorithms that are guaranteed to correctly detect it. Concep-
tually, the simplest of these algorithms relies on keeping track of a quantity that is
conserved and can be measured precisely. Let’s call it energy, since, of course, energy
is conserved. At the start of the program, each process has 1 unit of energy. When
a process runs out of work, it sends its energy to process 0. When a process fulfills
a request for work, it divides its energy in half, keeping half for itself, and sending
half to the process that’s receiving the work. Since energy is conserved and since the
program started with comm sz units, the program should terminate when process 0
finds that it has received a total of comm sz units.
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The Out of work function when executed by a process other than 0 sends its
energy to process 0. Process 0 can just add its energy to a received energy variable.
The No work left function also depends on whether process 0 or some other process
is calling. If process 0 is calling, it can receive any outstanding messages sent by
Out of work and add the energy into received energy. If received energy equals
comm sz, process 0 can send a termination message (with a special tag) to every
process. On the other hand, a process other than 0 can just check to see if there’s a
message with the termination tag.

The tricky part here is making sure that no energy is inadvertently lost; if we
try to use floats or doubles, we’ll almost certainly run into trouble since at some
point dividing by two will result in underflow. Since the amount of energy in exact
arithmetic can be represented by a common fraction, we can represent the amount of
energy on each process exactly by a pair of fixed-point numbers. The denominator
will always be a power of two, so we can represent it by its base-two logarithm.
For a large problem it is possible that the numerator could overflow. However, if
this becomes a problem, there are libraries that provide arbitrary precision rational
numbers (e.g, GMP [21]). An alternate solution is explored in Exercise 6.26.

Sending requests for work
Once we’ve decided on which process we plan to send a request to, we can just
send a zero-length message with a “request for work” tag. However, there are many
possibilities for choosing a destination:

1. Loop through the processes in round-robin fashion. Start with (my rank + 1)
% comm sz and increment this destination (modulo comm sz) each time a new
request is made. A potential problem here is that two processes can get “in synch”
and request work from the same destination repeatedly.

2. Keep a global destination for requests on process 0. When a process runs out of
work, it first requests the current value of the global destination from 0. Process
0 can increment this value (modulo comm sz) each time there’s a request. This
avoids the issue of multiple processes requesting work from the same destination,
but clearly process 0 can become a bottleneck.

3. Each process uses a random number generator to generate destinations. While it
can still happen that several processes may simultaneously request work from the
same process, the random choice of successive process ranks should reduce the
chance that several processes will make repeated requests to the same process.

These are three possible options. We’ll explore these options in Exercise 6.29. Also
see [22] for an analysis of the options.

Checking for and receiving work
Once a request is sent for work, it’s critical that the sending process repeatedly check
for a response from the destination. In fact, a subtle point here is that it’s critical that
the sending process check for a message from the destination process with a “work
available tag” or a “no work available tag.” If the sending process simply checks
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for a message from the destination, it may be “distracted” by other messages from
the destination and never receive work that’s been sent. For example, there might be
a message from the destination requesting work that would mask the presence of a
message containing work.

The Check for work function should therefore first probe for a message from the
destination indicating work is available, and, if there isn’t such a message, it should
probe for a message from the destination saying there’s no work available. If there is
work available, the Receive work function can receive the message with work and
unpack the contents of the message buffer into the process’ stack. Note also that it
needs to unpack the energy sent by the destination process.

Performance of the MPI programs
Table 6.11 shows the performance of the two MPI programs on the same two
fifteen-city problems on which we tested the Pthreads and the OpenMP implemen-
tations. Run-times are in seconds and the numbers in parentheses show the total
number of times stacks were split in the dynamic implementations. These results were
obtained on a different system from the system on which we obtained the Pthreads
results. We’ve also included the Pthreads results for this system, so that the two sets
of results can be compared. The nodes of this system only have four cores, so the
Pthreads results don’t include times for 8 or 16 threads. The cutoff number of cities
for the MPI runs was 12.

The nodes of this system are small shared-memory systems, so communication
through shared variables should be much faster than distributed-memory commu-
nication, and it’s not surprising that in every instance the Pthreads implementation
outperforms the MPI implementation.

The cost of stack splitting in the MPI implementation is quite high; in addition to
the cost of the communication, the packing and unpacking is very time-consuming.
It’s also therefore not surprising that for relatively small problems with few processes,
the static MPI parallelization outperforms the dynamic parallelization. However, the

Table 6.11 Performance of MPI and Pthreads Implementations of Tree
Search (times in seconds)

First Problem Second Problem

Static Dynamic Static Dynamic

Th/Pr Pth MPI Pth MPI Pth MPI Pth MPI

1 35.8 40.9 41.9 (0) 56.5 (0) 27.4 31.5 32.3 (0) 43.8 (0)
2 29.9 34.9 34.3 (9) 55.6 (5) 27.4 31.5 22.0 (8) 37.4 (9)
4 27.2 31.7 30.2 (55) 52.6 (85) 27.4 31.5 10.7 (44) 21.8 (76)
8 35.7 45.5 (165) 35.7 16.5 (161)

16 20.1 10.5 (441) 17.8 0.1 (173)
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8- and 16-process results suggest that if a problem is large enough to warrant the
use of many processes, the dynamic MPI program is much more scalable, and it
can provide far superior performance. This is borne out by examination of a 17-city
problem run with 16 processes: the dynamic MPI implementation has a run-time of
296 seconds, while the static implementation has a run-time of 601 seconds.

Note that times such as 0.1 second for the second problem running with 16 pro-
cesses don’t really show superlinear speedup. Rather, the initial distribution of work
has allowed one of the processes to find the best tour much faster than the initial distri-
butions with fewer processes, and the dynamic partitioning has allowed the processes
to do a much better job of load balancing.

6.3 A WORD OF CAUTION
In developing our solutions to the n-body problem and TSP, we chose our serial
algorithms because they were easy to understand and their parallelization was rela-
tively straightforward. In no case did we choose a serial algorithm because it was the
fastest or because it could solve the largest problem. Thus, it should not be assumed
that either the serial or the parallel solutions are the best available. For information
on “state-of-the-art” algorithms, see the bibliography, especially [12] for the n-body
problem and [22] for parallel tree search.

6.4 WHICH API?
How can we decide which API, MPI, Pthreads, or OpenMP is best for our applica-
tion? In general, there are many factors to consider, and the answer may not be at all
clear cut. However, here are a few points to consider.

As a first step, decide whether to use distributed-memory, or shared-memory. In
order to do this, first consider the amount of memory the application will need. In
general, distributed-memory systems can provide considerably more main memory
than shared-memory systems, so if the memory requirements are very large, you may
need to write the application using MPI.

If the problem will fit into the main memory of your shared-memory sys-
tem, you may still want to consider using MPI. Since the total available cache
on a distributed-memory system will probably be much greater than that avail-
able on a shared-memory system, it’s conceivable that a problem that requires
lots of main memory accesses on a shared-memory system will mostly access
cache on a distributed-memory system, and, consequently, have much better overall
performance.

However, even if you’ll get a big performance improvement from the large aggre-
gate cache on a distributed-memory system, if you already have a large and complex
serial program, it often makes sense to write a shared-memory program. It’s often
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possible to reuse considerably more serial code in a shared-memory program than
a distributed-memory program. It’s more likely that the serial data structures can be
easily adapted to a shared-memory system. If this is the case, the development effort
for the shared-memory program will probably be much less. This is especially true
for OpenMP programs, since some serial programs can be parallelized by simply
inserting some OpenMP directives.

Another consideration is the communication requirements of the parallel algo-
rithm. If the processes/threads do little communication, an MPI program should
be fairly easy to develop, and very scalable. At the other extreme, if the process-
es/threads need to be very closely coordinated, a distributed-memory program will
probably have problems scaling to large numbers of processes, and the performance
of a shared-memory program should be better.

If you decided that shared-memory is preferable, you will need to think about
the details of parallelizing the program. As we noted earlier, if you already have a
large, complex serial program, you should see if it lends itself to OpenMP. For exam-
ple, if large parts of the program can be parallelized with parallel for directives,
OpenMP will be much easier to use than Pthreads. On the other hand, if the program
involves complex synchronization among the threads—for example, read-write locks
or threads waiting on signals from other threads—then Pthreads will be much easier
to use.

6.5 SUMMARY
In this chapter, we’ve looked at serial and parallel solutions to two very different
problems: the n-body problem and solving the traveling salesperson problem using
tree search. In each case we began by studying the problem and looking at serial
algorithms for solving the problem. We continued by using Foster’s methodology
for devising a parallel solution, and then, using the designs developed with Foster’s
methodology, we implemented parallel solutions using Pthreads, OpenMP, and MPI.
In developing the reduced MPI solution to the n-body problem, we determined that
the “obvious” solution would be extremely difficult to implement correctly and would
require a huge amount of communication. We therefore turned to an alternative “ring
pass” algorithm, which proved to be much easier to implement and is probably more
scalable.

In the dynamically partitioned solutions for parallel tree search, we used differ-
ent methods for the three APIs. With Pthreads, we used a condition variable both for
communicating new work among the threads and for termination. OpenMP doesn’t
provide an analog to Pthreads condition variables, so we used busy-waiting instead.
In MPI, since all data is local, we needed to use a more complicated scheme to redis-
tribute work, in which a process that runs out of work chooses a destination process
and requests work from that process. To implement this correctly, a process that runs
out of work enters a busy-wait loop in which it requests work, looks for a response
to the work request, and looks for a termination message.
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We saw that in a distributed-memory environment in which processes send each
other work, determining when to terminate is a nontrivial problem. We also looked at
a relatively straightforward solution to the problem of distributed termination detec-
tion, in which there is a fixed amount of “energy” throughout the execution of the
program. When processes run out of work they send their energy to process 0, and
when processes send work to other processes, they also send half of their current
energy. Thus, when process 0 finds that it has all the energy, there is no more work,
and it can send a termination message.

In closing, we looked briefly at the problem of deciding which API to use.
The first consideration is whether to use shared-memory or distributed-memory.
To decide this, we should look at the memory requirements of the application and
the amount of communication among the processes/threads. If the memory require-
ments are great or the distributed-memory version can work mainly with cache, then
a distributed-memory program is likely to be much faster. On the other hand, if
there is considerable communication, a shared-memory program will probably be
faster.

In choosing between OpenMP and Pthreads, if there’s an existing serial program
and it can be parallelized by the insertion of OpenMP directives, then OpenMP is
probably the clear choice. However, if complex thread synchronization is needed—
for example, read-write locks or thread signaling—then Pthreads will be easier
to use. In the course of developing these programs, we also learned some more about
Pthreads, OpenMP, and MPI.

6.5.1 Pthreads and OpenMP
In tree search, we need to check the cost of the current best tour before updating
the best tour. In the Pthreads and OpenMP implementations of parallel tree search,
updating the best tour introduces a race condition. A thread that wants to update the
best tour must therefore first acquire a lock. The combination of “test lock condition”
and “update lock condition” can cause a problem: the lock condition (e.g. the cost of
the best tour) can change between the time of the first test and the time that the lock
is acquired. Thus, the threads also need to check the lock condition after they acquire
the lock, so pseudocode for updating the best tour should look something like this:

if (new tour cost < best tour cost) {
Acquire lock protecting best tour;
if (new tour cost < best tour cost)

Update best tour;
Relinquish lock;

}

Remember that we have also learned that Pthreads has a nonblocking version of
pthreads mutex lock called pthread mutex trylock. This function checks to see
if the mutex is available. If it is, it acquires the mutex and returns the value 0. If the
mutex isn’t available, instead of waiting for it to become available, it will return a
nonzero value.
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The analog of pthread mutex trylock in OpenMP is omp test lock. However,
its return values are the opposite of those for pthread mutex trylock: it returns a
nonzero value if the lock is acquired and a zero value if the lock is not acquired.

When a single thread should execute a structured block, OpenMP provides a
couple of alternatives to the test, and:

if (my rank == special rank) {
Execute action;

}

With the single directive

# pragma omp single
Execute action;

Next action;

the run-time system will choose a single thread to execute the action. The other
threads will wait in an implicit barrier before proceeding to Next action. With the
master directive

# pragma omp master
Execute action;

Next action;

the master thread (thread 0) will execute the action. However, unlike the single
directive, there is no implicit barrier after the block Execute action, and the other
threads in the team will proceed immediately to execute Next action. Of course, if
we need a barrier before proceeding, we can add an explicit barrier after completing
the structured block Execute action. In Exercise 6.6 we see that OpenMP provides
a nowait clause which can modify a single directive:

# pragma omp single nowait
Execute action;

Next action;

When this clause is added, the thread selected by the run-time system to execute the
action will execute it as before. However, the other threads in the team won’t wait,
they’ll proceed immediately to execute Next action. The nowait clause can also
be used to modify parallel for and for directives.

6.5.2 MPI
We learned quite a bit more about MPI. We saw that in some of the collective com-
munication functions that use an input and an output buffer, we can use the argument
MPI IN PLACE so that the input and output buffers are the same. This can save on
memory and the implementation may be able to avoid copying from the input buffer
to the output buffer.
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The functions MPI Scatter and MPI Gather can be use to split an array of data
among processes and collect distributed data into a single array, respectively. How-
ever, they can only be used when the amount of data going to or coming from each
process is the same for each process. If we need to assign different amounts of data
to each process, or to collect different amounts of data from each process, we can use
MPI Scatterv and MPI Gatherv, respectively:

int MPI Scatterv(
void∗ sendbuf /∗ in ∗/,
int∗ sendcounts /∗ in ∗/,
int∗ displacements /∗ in ∗/,
MPI Datatype sendtype /∗ in ∗/,
void∗ recvbuf /∗ out ∗/,
int recvcount /∗ in ∗/,
MPI Datatype recvtype /∗ in ∗/,
int root /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

int MPI Gatherv(
void∗ sendbuf /∗ in ∗/,
int sendcount /∗ in ∗/,
MPI Datatype sendtype /∗ in ∗/,
void∗ recvbuf /∗ out ∗/,
int∗ recvcounts /∗ in ∗/,
int∗ displacements /∗ in ∗/,
MPI Datatype recvtype /∗ in ∗/,
int root /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The arguments sendcounts for MPI Scatterv and recvcounts for MPI Gatherv
are arrays with comm sz elements. They specify the amount of data (in units of
sendtype/recvtype) going to or coming from each process. The displacements
arguments are also arrays with comm sz elements. They specify the offsets (in units
of sendtype/recvtype) of the data going to or coming from each process.

We saw that there is a special operator, MPI MIN LOC, that can be used in calls to
MPI Reduce and MPI Allreduce. It operates on pairs of values and returns a pair of
values. If the pairs are

(a0,b0),(a1,b1), . . . ,(acomm sz−1,bcomm sz−1),

suppose that a is the minimum of the ai’s and q is the smallest process rank at which
a occurs. Then the MPI MIN LOC operator will return the pair (aq,bq). We used this to
find not only the cost of the minimum-cost tour, but by making the bi’s the process
ranks, we determined which process owned the minimum-cost tour.

In our development of two MPI implementations of parallel tree search, we made
repeated use of MPI Iprobe:

int MPI Iprobe(
int source /∗ in ∗/,
int tag /∗ in ∗/,
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MPI Comm comm /∗ in ∗/,
int∗ msg avail p /∗ out ∗/,
MPI Status status p /∗ out ∗/);

It checks to see if there is a message from source with tag tag available to be
received. If such a message is available, msg avail p will be given the value true.
Note that MPI Iprobe doesn’t actually receive the message, but if such a message is
available, a call to MPI Recv will receive it. Both the source and tag arguments can
be the wildcards MPI ANY SOURCE and MPI ANY TAG, respectively. For example, we
often wanted to check whether any process had sent a message with a new best cost.
We checked for the arrival of such a message with the call

MPI Iprobe(MPI ANY SOURCE, NEW COST TAG, comm, &msg avail,
&status);

If such a message is available, its source will be returned in the ∗status p argument.
Thus, status.MPI SOURCE can be used to receive the message:

MPI Recv(&new cost, 1, MPI INT, status.MPI SOURCE, NEW COST TAG,
comm, MPI STATUS IGNORE);

There were several occasions when we wanted a send function to return immedi-
ately, regardless of whether the message had actually been sent. One way to arrange
this in MPI is to use buffered send mode. In a buffered send, the user program
provides storage for messages with a call to MPI Buffer attach. Then when the
program sends the message with MPI Bsend, the message is either transmitted imme-
diately or copied to the user-program-provided buffer. In either case the call returns
without blocking. When the program no longer needs to use buffered send mode, the
buffer can be recovered with a call to MPI Buffer detach.

We also saw that MPI provides three other modes for sending: synchronous,
standard, and ready. Synchronous sends won’t buffer the data; a call to the syn-
chronous send function MPI Ssend won’t return until the receiver has begun receiving
the data. Ready sends (MPI Rsend) are erroneous unless the matching receive has
already been started when MPI Rsend is called. The ordinary send MPI Send is called
the standard mode send.

In Exercise 6.22 we explore an alternative to buffered mode: nonblocking sends.
As the name suggests, a nonblocking send returns regardless of whether the message
has been transmitted. However, the send must be completed by calling one of sev-
eral functions that wait for completion of the nonblocking operation. There is also a
nonblocking receive function.

Since addresses on one system will, in general, have no relation to addresses
on another system, pointers should not be sent in MPI messages. If you’re using
data structures that have embedded pointers, MPI provides the function MPI Pack
for storing a data structure in a single, contiguous buffer before sending. Similarly,
the function MPI Unpack can be used to take data that’s been received into a single
contiguous buffer and unpack it into a local data structure. Their syntax is



6.6 Exercises 341

int MPI Pack(
void∗ data to be packed /∗ in ∗/,
int to be packed count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
void∗ contig buf /∗ out ∗/,
int contig buf size /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
MPI Comm comm /∗ in ∗/);

int MPI Unpack(
void∗ contig buf /∗ in ∗/,
int contig buf size /∗ in ∗/,
int∗ position p /∗ in/out ∗/,
void∗ unpacked data /∗ out ∗/,
int unpack count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
MPI Comm comm /∗ in ∗/);

The key to their use is the position p argument. When MPI Pack is called, it
should reference the first available location in contig buf. So, for example, when
we start packing the data ∗position p should be set to 0. When MPI Pack returns,
∗position p will refer to the first available location following the data that was just
packed. Thus, successive elements of a data structure can be packed into a single
buffer by repeated calls to MPI Pack. When a packed buffer is received, the data can
be unpacked in a completely analogous fashion. Note that when a buffer packed
with MPI Pack is sent, the datatype for both the send and the receive should be
MPI PACKED.

6.6 EXERCISES

6.1. In each iteration of the serial n-body solver, we first compute the total force on
each particle, and then we compute the position and velocity of each particle.
Would it be possible to reorganize the calculations so that in each iteration
we did all of the calculations for each particle before proceeding to the next
particle? That is, could we use the following pseudocode?

for each timestep
for each particle {

Compute total force on particle;
Find position and velocity of particle;
Print position and velocity of particle;

}

If so, what other modifications would we need to make to the solver? If not,
why not?

6.2. Run the basic serial n-body solver for 1000 timesteps with a stepsize of
0.05, no output, and internally generated initial conditions. Let the number
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of particles range from 500 to 2000. How does the run-time change as the
number of particles increases? Can you extrapolate and predict how many
particles the solver could handle if it ran for 24 hours?

6.3. Parallelize the reduced version of the n-body solver with OpenMP or Pthreads
and a single critical directive (OpenMP) or a single mutex (Pthreads) to
protect access to the forces array. Parallelize the rest of the solver by paral-
lelizing the inner for loops. How does the performance of this code compare
with the performance of the serial solver? Explain your answer.

6.4. Parallelize the reduced version of the n-body solver with OpenMP or Pthreads
and a lock/mutex for each particle. The locks/mutexes should be used to pro-
tect access to updates to the forces array. Parallelize the rest of the solver
by parallelizing the inner for loops. How does the performance compare with
the performance of the serial solver? Explain your answer.

6.5. In the shared-memory reduced n-body solver, if we use a block partition in
both phases of the calculation of the forces, the loop in the second phase can
be changed so that the for thread loop only goes up to my rank instead of
thread count. That is, the code

# pragma omp for
for (part = 0; part < n; part++) {

forces[part][X] = forces[part][Y] = 0.0;
for (thread = 0; thread < thread count; thread++) {

forces[part][X] += loc forces[thread][part][X];
forces[part][Y] += loc forces[thread][part][Y];

}

}

can be changed to

# pragma omp for
for (part = 0; part < n; part++) {

forces[part][X] = forces[part][Y] = 0.0;
for (thread = 0; thread < my rank; thread++) {

forces[part][X] += loc forces[thread][part][X];
forces[part][Y] += loc forces[thread][part][Y];

}

}

Explain why this change is OK. Run the program with this modification and
compare its performance with the original code with block partitioning and
the code with a cyclic partitioning of the first phase of the forces calculation.
What conclusions can you draw?

6.6. In our discussion of the OpenMP implementation of the basic n-body solver,
we observed that the implied barrier after the output statement wasn’t neces-
sary. We could therefore modify the single directive with a nowait clause.
It’s possible to also eliminate the implied barriers at the ends of the two for
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each particle q loops by modifying for directives with nowait clauses.
Would doing this cause any problems? Explain your answer.

6.7. For the shared-memory implementation of the reduced n-body solver, we saw
that a cyclic schedule for the computation of the forces outperformed a block
schedule, in spite of the reduced cache performance. By experimenting with
the OpenMP or the Pthreads implementation, determine the performance of
various block-cyclic schedules. Is there an optimal block size for your system?

6.8. If x and y are double-precision n-dimensional vectors and α is a double-
precision scalar, the assignment

y←− αx+ y

is called a DAXPY. DAXPY is an abbreviation of “Double precision Alpha
times X Plus Y.” Write a Pthreads or OpenMP program in which the mas-
ter thread generates two large, random n-dimensional arrays and a random
scalar, all of which are doubles. The threads should then carry out a DAXPY
on the randomly generated values. For large values of n and various numbers
of threads compare the performance of the program with a block partition
and a cyclic partition of the arrays. Which partitioning scheme performs
better? Why?

6.9. Write an MPI program in which each process generates a large, initialized,
m-dimensional array of doubles. Your program should then repeatedly call
MPI Allgather on the m-dimensional arrays. Compare the performance of
the calls to MPI Allgather when the global array (the array that’s created by
the call to MPI Allgather) has
a. a block distribution, and
b. a cyclic distribution.

To use a cyclic distribution, download the code cyclic derived.c from
the book’s web site, and use the MPI datatype created by this code for the
destination in the calls to MPI Allgather. For example, we might call

MPI Allgather(sendbuf, m, MPI DOUBLE, recvbuf, 1, cyclic mpi t,
comm);

if the new MPI datatype were called cyclic mpi t.
Which distribution performs better? Why? Don’t include the overhead

involved in building the derived datatype.

6.10. Consider the following code:

int n, thread count, i, chunksize;
double x[n], y[n], a;

. . .
# pragma omp parallel num threads(thread count) \

default(none) private(i) \
shared(x, y, a, n, thread count, chunksize)
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{

# pragma omp for schedule(static, n/thread count)
for (i = 0; i < n; i++) {

x[i] = f(i); /∗ f is a function ∗/
y[i] = g(i); /∗ g is a function ∗/

}

# pragma omp for schedule(static, chunksize)
for (i = 0; i < n; i++)

y[i] += a∗x[i];
} /∗ omp parallel ∗/

Suppose n = 64, thread count = 2, the cache-line size is 8 doubles, and
each core has an L2 cache that can store 131,072 doubles. If chunksize =
n/thread count, how many L2 cache misses do you expect in the second
loop? If chunksize = 8, how many L2 misses do you expect in the second
loop? You can assume that both x and y are aligned on a cache-line boundary.
That is, both x[0] and y[0] are the first elements in their respective cache
lines.

6.11. Write an MPI program that compares the performance of MPI Allgather
using MPI IN PLACE with the performance of MPI Allgather when each pro-
cess uses separate send and receive buffers. Which call to MPI Allgather is
faster when run with a single process? What if you use multiple processes?

6.12. a. Modify the basic MPI implementation of the n-body solver so that it uses
a separate array for the local positions. How does its performance compare
with the performance of the original n-body solver? (Look at performance
with I/O turned off.)

b. Modify the basic MPI implementation of the n-body solver so that it dis-
tributes the masses. What changes need to be made to the communications
in the program? How does the performance compare with the original
solver?

6.13. Using Figure 6.6 as a guide, sketch the communications that would be needed
in an “obvious” MPI implementation of the reduced n-body solver if there
were three processes, six particles, and the solver used a cyclic distribution of
the particles.

6.14. Modify the MPI version of the reduced n-body solver so that it uses two calls
to MPI Sendrecv replace for each phase of the ring pass. How does the
performance of this implementation compare to the implementation that uses
a single call to MPI Sendrecv replace?

6.15. A common problem in MPI programs is converting global array indexes to
local array indexes and vice-versa.
a. Find a formula for determining a global index from a local index if the

array has a block distribution.
b. Find a formula for determining a local index from a global index if the

array has a block distribution.
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c. Find a formula for determining a global index from a local index if the
array has a cyclic distribution.

d. Find a formula for determining a local index from a global index if the
array has cyclic distribution.

You can assume that the number of processes evenly divides the number of
elements in the global array. Your solutions should only use basic arithmetic
operators (+,−,∗,/). They shouldn’t use any loops or branches.

6.16. In our implementation of the reduced n-body solver, we make use of a func-
tion First index which, given a global index of a particle assigned to one
process, determines the “next higher” global index of a particle assigned to
another process. The input arguments to the function are the following:
a. The global index of the particle assigned to the first process
b. The rank of the first process
c. The rank of the second process
d. The number of processes
The return value is the global index of the second particle. The function
assumes that the particles have a cyclic distribution among the processes.
Write C-code for First index. (Hint: Consider two cases: the rank of the
first process is less than the rank of the second, and the rank of the first is
greater than or equal to the rank of the second).

6.17. a. Use Figure 6.10 to determine the maximum number of records that would
be on the stack at any one time in solving a four-city TSP. (Hint: Look at
the stack after branching as far as possible to the left).

b. Draw the tree structure that would be generated in solving a five-city TSP.
c. Determine the maximum number of records that would be on the stack at

any one time during a search of this tree.
d. Use your answers to the preceding parts to determine a formula for the

maximum number of records that would be on the stack at any one time in
solving an n-city TSP.

6.18. Breadth-first search can be implemented as an iterative algorithm using a
queue. Recall that a queue is a “first-in first-out” list data structure, in which
objects are removed, or dequeued, in the same order in which they’re added,
or enqueued. We can use a queue to solve TSP and implement breadth-first
search as follows:

queue = Init queue(); /∗ Create empty queue ∗/
tour = Init tour(); /∗ Create partial tour that visits

hometown ∗/
Enqueue(queue, tour);
while (!Empty(queue)) {

tour = Dequeue(queue);
if (City count(tour) == n) {

if (Best tour(tour))
Update best tour(tour);

} else {
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for each neighboring city
if (Feasible(tour, city)) {

Add city(tour, city);
Enqueue(tour);
Remove last city(tour);

}

}

Free tour(tour);
} /∗ while !Empty ∗/

This algorithm, although correct, will have serious difficulty if it’s used on a
problem with more than 10 or so cities. Why?

In the shared-memory implementations of our solutions to TSP, we use
breadth-first search to create an initial list of tours that can be divided among
the threads.
a. Modify this code so that it can be used by thread 0 to generate a queue of

at least thread count tours.
b. Once the queue has been generated by thread 0, write pseudocode that

shows how the threads can initialize their stacks with a block of tours
stored in the queue.

6.19. Modify the Pthreads implementation of static tree search so that it uses a read-
write lock to protect the examination of the best tour. Read-lock the best tour
when calling Best tour, and write-lock it when calling Update best tour.
Run the modified program with several input sets. How does the change affect
the overall run-time?

6.20. Suppose the stack on process/thread A contains k tours.
a. Perhaps the simplest strategy for implementing stack splitting in TSP is to

pop k/2 tours from A’s existing stack and push them onto the new stack.
Explain why this is unlikely to be a good strategy.

b. Another simple strategy is to split the stack on the basis of the cost of the
partial tours on the stack. The least-cost partial tour goes to A. The second
cheapest tour goes to new stack. The third cheapest goes to A, and so on.
Is this likely to be a good strategy? Explain your answer.

c. A variation on the strategy outlined in the preceding problem is to use
average cost per edge. In average cost per edge, the partial tours on A’s
stack are ordered according to their cost divided by the number of edges in
the partial tour. Then the tours are assigned in round-robin fashion to the
stacks, that is, the cheapest cost per edge to A, the next cheapest cost per
edge to new stack, and so on. Is this likely to be a good strategy? Explain
your answer.

Implement the three strategies outlined here in one of the dynamic load-
balancing codes. How do these strategies compare to each other and the
strategy outlined in the text? How did you collect your data?

6.21. a. Modify the static MPI TSP program so that each process uses a local best
tour data structure until it has finished searching. When all the processes
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have finished executing, the processes should execute a global reduction
to find the least-cost tour. How does the performance of this implementa-
tion compare to the static implementation? Can you find input problems
for which its performance is competitive with the original static implem-
entation?

b. Create a TSP digraph in which the initial tours assigned to processes
1,2, . . . ,comm sz −1 all have an edge that has a cost that is much greater
than the total cost of any complete tour that will be examined by process
0. How do the various implementations perform on this problem when
comm sz processes are used?

6.22. MPI Recv and each of the sends we’ve studied is blocking. MPI Recv won’t
return until the message is received, and the various sends won’t return
until the message is sent or buffered. Thus, when one of these operations
returns, you know the status of the message buffer argument. For MPI Recv,
the message buffer contains the received message—at least if there’s been
no error—and for the send operations, the message buffer can be reused.
MPI also provides a nonblocking version of each of these functions, that
is, they return as soon as the MPI run-time system has registered the oper-
ation. Furthermore, when they return, the message buffer argument cannot
be accessed by the user program: the MPI run-time system can use the
actual user message buffer to store the message. This has the virtue that
the message doesn’t have to be copied into or from an MPI-supplied storage
location.

When the user program wants to reuse the message buffer, she can force
the operation to complete by calling one of several possible MPI functions.
Thus, the nonblocking operations split a communication into two phases:. Begin the communication by calling one of the nonblocking functions. Complete the communication by calling one of the completion functions

Each of the nonblocking send initiation functions has the same syntax
as the blocking function, except that there is a final request argument. For
example,

int MPI Isend(
void∗ msg /∗ in ∗/,
int count /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
int dest /∗ in ∗/,
int tag /∗ in ∗/,
MPI Comm comm /∗ in ∗/,
MPI Request∗ request p /∗ out ∗/);

The nonblocking receive replaces the status argument with a request argu-
ment. The request arguments identify the operation to the run-time system,
so that when a program wishes to complete the operation, the completion
function takes a request argument.
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The simplest completion function is MPI Wait:

int MPI Wait(
MPI Request∗ request p /∗ in/out ∗/
MPI Status∗ status p /∗ out ∗/);

When this returns, the operation that created ∗request p will have completed.
In our setting, ∗request p will be set to MPI REQUEST NULL, and ∗status p
will store information on the completed operation.

Note that nonblocking receives can be matched to blocking sends and
nonblocking sends can be matched to blocking receives.

We can use nonblocking sends to implement our broadcast of the best
tour. The basic idea is that we create a couple of arrays containing comm sz
elements. The first stores the cost of the new best tour, the second stores the
requests, so the basic broadcast looks something like this:

int costs[comm sz];
MPI Request requests[comm sz];

for (dest = 0; dest < comm sz; dest++)
if (my rank != dest) {

costs[dest] = new best tour cost;
MPI Isend(&costs[dest], 1, MPI INT, dest, NEW COST TAG,

comm, &requests[dest]);
}

requests[my rank] = MPI REQUEST NULL;

When this loop is completed, the sends will have been started, and they can
be matched by ordinary calls to MPI Recv.

There are a variety of ways to deal with subsequent broadcasts. Perhaps
the simplest is to wait on all the previous nonblocking sends with the function
MPI Waitall:

int MPI Waitall(
int count /∗ in ∗/,
MPI Request requests[] /∗ in/out ∗/,
MPI Status statuses[] /∗ out ∗/);

When this returns, all of the operations will have completed (assuming there
are no errors). Note that it’s OK to call MPI Wait and MPI Waitall if a request
has the value MPI REQUEST NULL.

Use nonblocking sends to implement a broadcast of best tour costs in
the static MPI implementation of the TSP program. How does its perfor-
mance compare to the performance of the implementation that uses buffered
sends?

6.23. Recall that an MPI Status object is a struct with members for the source, the
tag, and any error code for the associated message. It also stores information
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on the size of the message. However, this isn’t directly accessible as a
member, it is only accessible through the MPI function MPI Get count:

int MPI Get count(
MPI Status∗ status p /∗ in ∗/,
MPI Datatype datatype /∗ in ∗/,
int∗ count p /∗ out ∗/);

When MPI Get count is passed the status of a message and a datatype, it
returns the number of objects of the given datatype in the message. Thus,
MPI Iprobe and MPI Get count can be used to determine the size of an
incoming message before the message is received. Use these to write a
Cleanup messages function that can be called before an MPI program quits.
The purpose of the function is to receive any unreceived messages so that
functions such as MPI Buffer detach won’t hang.

6.24. The program mpi tsp dyn.c takes a command-line argument split cutoff.
If a partial tour has visited split cutoff or more cities, it’s not considered
a candidate for sending to another process. The Fulfill request function
will therefore only send partial tours with fewer than split cutoff cities.
How does split cutoff affect the overall run-time of the program? Can you
find a reasonably good rule of thumb for deciding on the split cutoff? How
does changing the number of processes (that is, changing comm sz) affect the
best value for split cutoff?

6.25. Pointers cannot be sent by MPI programs since an address that is valid on the
sending process may cause a segmentation violation on the receiving process,
or, perhaps worse, refer to memory that’s already being used by the receiving
process. There are a couple of alternatives that can be used to address this
problem:
a. The object that uses pointers can be packed into contiguous memory by

the sender and unpacked by the receiver.
b. The sender and the receiver can build MPI derived datatypes that map the

memory used by the sender and valid memory on the receiver.
Write two Send linked list functions and two matching Recv linked
list functions. The first pair of send-receive functions should use MPI Pack
and MPI Unpack. The second pair should use derived datatypes. Note that the
second pair may need to send two messages: the first will tell the receiver how
many nodes are in the linked list, and the second will send the actual list. How
does the performance of the two pairs of functions compare? How does their
performance compare to the cost of sending a block of contiguous memory of
the same size as the packed list?

6.26. The dynamically partitioned MPI implementation of the TSP solver uses a ter-
mination detection algorithm that may require the use of very high-precision
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rational arithmetic (that is, common fractions with very large numerators
and/or denominators).
a. If the total amount of energy is comm sz, explain why the amount of energy

stored by any process other than zero will have the form 1/2k for some
nonnegative integer k. Thus, the amount of energy stored by any process
other than zero can be represented by k, an unsigned integer.

b. Explain why the representation in the first part is extremely unlikely to
overflow or underflow.

c. Process 0, on the other hand, will need to store fractions with a numer-
ator other than one. Explain how to implement such a fraction using an
unsigned integer for the denominator and a bit array for the numerator.
How can this implementation deal with overflow of the numerator?

6.27. If there are many processes and many redistributions of work in the dynamic
MPI implementation of the TSP solver, process 0 could become a bottleneck
for energy returns. Explain how one could use a spanning tree of processes in
which a child sends energy to its parent rather than process 0.

6.28. Modify the implementation of the TSP solver that uses MPI and dynamic par-
titioning of the search tree so that each process reports the number of times it
sends an “out of work” message to process 0. Speculate about how receiving
and handling the out of work messages affects the overall run-time for process 0.

6.29. The C source file mpi tsp dyn.c contains the implementation of the MPI TSP
solver that uses dynamic partitioning of the search tree. The online version
uses the first of the three methods outlined in Section 6.2.12 for determin-
ing to which process a request for work should be sent. Implement the other
two methods and compare the performance of the three. Does one method
consistently outperform the other two?

6.30. Determine which of the three APIs is preferable for the n-body solvers and
solving TSP.
a. How much memory is required for each of the serial programs? When the

parallel programs solve large problems, will they fit into the memory of your
shared-memory system? What about your distributed-memory system?

b. How much communication is required by each of the parallel algorithms?
c. Can the serial programs be easily parallelized by the use of OpenMP direc-

tives? Do they need synchronization constructs such as condition variables
or read-write locks?

Compare your decisions with the actual performance of the programs. Did
you make the right decisions?

6.7 PROGRAMMING ASSIGNMENTS

6.1. Look up the classical fourth-order Runge Kutta method for solving an ordinary
differential equation. Use this method instead of Euler’s method to estimate
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the values of sq(t) and s′q(t). Modify the reduced versions of the serial n-body
solver, either the Pthreads or the OpenMP n-body solver, and the MPI n-body
solver. How does the output compare to the output using Euler’s method? How
does the performance of the two methods compare?

6.2. Modify the basic MPI n-body solver so that it uses a ring pass the instead of
a call to MPI Allgather. When a process receives the positions of particles
assigned to another process, it computes all the forces resulting from interac-
tions between its assigned particles and the received particles. After receiving
comm sz− 1 sets of positions, each process should be able to compute the total
force on each of its particles. How does the performance of this solver compare
with the original basic MPI solver? How does its performance compare with
the reduced MPI solver?

6.3. We can simulate a ring pass using shared-memory:

Compute loc forces and tmp forces due to my particle
interactions;

Notify dest that tmp forces are available;
for (phase = 1; phase < thread count; phase++) {

Wait for source to notify me that tmp forces are available;
Compute forces due to my particle interactions with

‘‘received’’ particles;
Notify dest that tmp forces are available;

}

Add my tmp forces into my loc forces;

To implement this, the main thread can allocate n storage locations for the
total forces and n locations for the “temp” forces. Each thread will oper-
ate on the appropriate subset of locations in the two arrays. It’s easiest to
implement “notify” and “wait” using semaphores. The main thread can allo-
cate a semaphore for each source-dest pair and initialize each semaphore to 0
(or “locked”). After a thread has computed the forces, it can call sem post
to notify the dest thread, and a thread can block in a call to sem wait to
wait for the availability of the next set of forces. Implement this scheme in
Pthreads. How does its performance compare with the performance of the origi-
nal reduced OpenMP/Pthreads solver? How does its performance compare with
the reduced MPI solver? How does its memory usage compare with the reduced
OpenMP/Pthreads solver? The reduced MPI solver?

6.4. The storage used in the reduced MPI n-body solver can be further reduced
by having each process store only its n/comm sz masses and communicating
masses as well as positions and forces. This can be implemented by adding stor-
age for an additional n/comm sz doubles to the tmp data array. How does this
change affect the performance of the solver? How does the memory required
by this program compare with the memory required for the original MPI
n-body solver? How does its memory usage compare with the reduced OpenMP
solver?
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6.5. The Terminated function in the OpenMP dynamic implementation of tree
search uses busy-waiting, which can be very wasteful of system resources.
Ask a system guru if your Pthreads and OpenMP implementations can be used
together in a single program. If so, modify the solution in the OpenMP dynamic
implementation so that it uses Pthreads and condition variables for work redis-
tribution and termination. How does the performance of this implementation
compare with the performance of the original implementation?

6.6. The implementations of iterative tree search that we discussed used an array-
based stack. Modify the implementation of either the Pthreads or OpenMP
dynamic tree search program so that it uses a linked-list-based stack. How does
the use of the linked list affect the performance?

Add a command-line argument for the “cutoff size” that was discussed
briefly in the text. How does the use of a cutoff size affect the performance?

6.7. Use Pthreads or OpenMP to implement tree search in which there’s a shared
stack. As we discussed in the text, it would be very inefficient to have all calls
to Push and Pop access a shared stack, so the program should also use a local
stack for each thread. However, the Push function can occasionally push partial
tours onto the shared stack, and the Pop function can pop several tours from the
shared stack and push them onto the local stack, if the calling thread has run
out of work. Thus, the program will need some additional input arguments:
a. The frequency with which tours are pushed onto the shared stack. This can

be an int. For example, if every 10th tour generated by a thread should
be pushed onto the shared stack, then the command-line argument would
be 10.

b. A blocksize for pushing. There may be less contention if, rather than
pushing a single tour onto the shared stack, a block of several tours is
pushed.

c. A blocksize for popping. If we pop a single tour from the shared stack when
we run out of work, we may get too much contention for the shared stack.

How can a thread determine whether the program has terminated?
Implement this design and your termination detection with Pthreads or

OpenMP. How do the various input arguments affect its performance? How
does the optimal performance of this program compare with the optimal
performance of the dynamically load-balanced code we discussed in the text?
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7Where to Go from Here

Now that you know the basics of writing parallel programs using MPI, Pthreads, and
OpenMP, you may be wondering if there are any new worlds left to conquer. The
answer is a resounding yes. Here are a few topics for further study. With each topic
we’ve listed several references. Keep in mind, though, that this list is necessarily
brief, and parallel computing is a fast-changing field. You may want to do a little
searching on the Internet before settling down to do more study.

1. MPI. MPI is a large and evolving standard. We’ve only discussed a part of the
original standard, MPI-1. We’ve learned about some of the point-to-point and
collective communications and some of the facilities it provides for building
derived datatypes. MPI-1 also provides standards for creating and managing
communicators and topologies. We briefly discussed communicators in the text;
recall that roughly speaking, a communicator is a collection of processes that can
send messages to each other. Topologies provide a means for imposing a logical
organization on the processes in a communicator. For example, we talked about
partitioning a matrix among a collection of MPI processes by assigning blocks
of rows to each process. In many applications, it’s more convenient to assign
block submatrices to the processes. In such an application, it would be very use-
ful to think of our processes as a rectangular grid in which a process is identified
with the submatrix it’s working with. Topologies provide a means for us to make
this identification. Thus, we might refer to the process in, say, the second row
and fourth column instead of process 13. The texts [23, 43, 47] all provide more
in-depth introductions to MPI-1.

MPI-2 added dynamic process management, one-sided communications, and
parallel I/O to MPI-1. We mentioned one-sided communications and parallel
I/O in Chapter 2. Also, when we discussed Pthreads, we mentioned that many
Pthreads programs create threads as they’re needed rather than creating all the
threads at the beginning of execution. Dynamic process management adds this
and other capabilities to MPI process management. [24] is an introduction to
MPI-2. There is also a combined edition of the MPI-1 and MPI-2 standards [37].

2. Pthreads and semaphores. We’ve discussed some of the functions Pthreads
provides for starting and terminating threads, protecting critical sections, and

Copyright c© 2011 Elsevier Inc. All rights reserved.
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synchronizing threads. There are a number of other functions, and it’s also
possible to change the behavior of most of the functions we’ve looked at.
Recall that the various object initialization functions take an “attribute”
argument. We always simply passed in NULL for these arguments, so the object
functions would have the “default” behavior. Passing in other values for these
arguments changes this. For example, if a thread obtains a mutex and it then
attempts to relock the mutex (e.g., when it makes a recursive function call)
the default behavior is undefined. However, if the mutex was created with the
attribute PTHREAD MUTEX ERRORCHECK, the second call to pthread mutex lock
will return an error. On the other hand, if the mutex was created with the attribute
PTHREAD MUTEX RECURSIVE, then the attempt to relock will succeed.

Another subject we’ve only touched on is the use of nonblocking operations.
We mentioned pthread mutex trylock when we were discussing the dynamic
implementation of tree search. There are also nonblocking versions of the read-
write lock functions and sem wait. These functions provide the opportunity for
a thread to continue working when a lock or semaphore is owned by another
thread. They therefore have the potential to greatly increase the parallelism in an
application.

Like MPI, Pthreads and semaphores are evolving standards. They are part of a
collection of standards known as POSIX. The latest version of POSIX is available
online through The Open Group [41]. The Pthreads header file man page [46] and
the semaphores header file man page [48] provide links to man pages for all the
Pthreads and semaphore functions. For some texts on Pthreads, see [6, 32].

3. OpenMP. We’ve learned about some of the most important directives, clauses,
and functions in OpenMP. We’ve learned about how to start multiple threads, how
to parallelize for loops, how to protect critical sections, how to schedule loops,
and how to modify the scope of variables. However, there is still a good deal more
to learn. Perhaps the most important new directive is the recently introduced task
directive. It can be used to parallelize such constructs as recursive function calls
and while loops. In essence, it identifies a structured block as a task that can be
executed by a thread. When a thread encounters a task directive, the thread can
either execute the code in the structured block or it can be added to a conceptual
pool of tasks, and threads in the current team will execute the tasks until the pool
is empty.

The OpenMP Architecture Review Board is continuing development of the
OpenMP standard. The latest documents are available at [42]. For some texts,
see [8, 10, 47].

4. Parallel hardware. Parallel hardware tends to be a fast-moving target. Fortunately,
the texts by Hennessy and Patterson [26, 44] are updated fairly frequently. They
provide a comprehensive overview on topics such as instruction-level parallelism,
shared-memory systems, and interconnects. For a book that focuses exclusively
on parallel systems, see [11].

5. General parallel programming. There are a number of books on parallel program-
ming that don’t focus on a particular API. [50] provides a relatively elementary
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discussion of both distributed- and shared-memory programming. [22] has an
extensive discussion of parallel algorithms and a priori analysis of program per-
formance. [33] provides an overview of current parallel programming languages,
and some directions that may be taken in the near future.

For discussions of shared-memory programming see [3, 4, 27]. The text [4]
discusses techniques for designing and developing shared-memory programs.
In addition it develops a number of parallel programs for solving problems
such as searching and sorting. Both [3] and [27] provide in-depth discussions
of determining whether an algorithm is correct and mechanisms for insuring
correctness.

6. GPUs. One of the most promising developments in parallel computing is the
use of graphics processing units (GPUs) for general purpose parallel computing.
They have been used very successfully in a variety of data parallel programs, or
programs that obtain parallelism by partitioning the data among the processors.
The article [17] provides an overview of GPUs. The book [30] also provides an
overview of GPUs. In addition, it gives an introduction to programming them
using CUDA, NVIDIA’s language for programming GPUs, and OpenCL, a stan-
dard for programming heterogeneous systems including conventional CPUs and
GPUs.

7. History of parallel computing. It’s surprising to many programmers that parallel
computing has a long and venerable history—well, as long and venerable as most
topics in computer science. The article [14] provides a very brief survey and some
references. The website [51] is a timeline listing milestones in the development
of parallel systems.

Now go out and conquer new worlds.
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gettimeofday function, 121
Global sum, 5–7

function, 103
multiple cores forming, 5

Global variables, 97, 137
Graphics processing units (GPUs), 32, 355
guided schedule types, 239
Gustafson’s law, 62

H
Hang, 94, 132
Hardware multithreading, 28–29
Heterogeneous system, 73
Homogeneous system, 73
Hybrid systems, 35
Hypercubes, 39, 40f

I
ILP, see Instruction-level parallelism
Indirect interconnects, 40, 40f
Input and output (I/O), 56–57, 75, 280–281
Instruction-level parallelism (ILP)

multiple issue, 27–28
pipelining, 25–26, 27t

Integrated development environments (IDEs), 70
Interconnection networks

direct interconnect, 37–38
distributed-memory interconnects, 37–42
indirect interconnects, 40
latency and bandwidth, 42
shared-memory interconnects, 35–37
switched interconnects, 35

J
Joining process, 213

K
Kernighan, Brian, and Ritchie, Dennis, 71, 84
Kluge, 157

L
Latency, 42, 74
Leaf (search tree), 301, 306
Libraries (MPI, Pthreads, OpenMP), 8
Light-weight processes, 152

Linear speedup, 125
Linked list

functions, 181–183
Delete, 182, 184
Insert, 182, 183
Member, 182, 186

multithreaded, 183–187
Linux, 153
Load (as in load/store), 31
Load balancing, 7, 12, 48
Local variables, 97, 137
Lock data structure, 242
Locks, 246–248
Loop-carried dependences, 228–229
Loops

bubble sort, 232–233
odd-even transposition sort, 233–236
scheduling, 236–241

lpthread, 153

M
MacOS X, 153
Main memory, 15, 71, 72, 251
Main thread, 157, 158f
Man page, 354
Mapping (Foster’s methodology), 76, 279
Mapping (Caches), 20–22
Master thread (OpenMP), 214
Matrix-vector multiplication, 114f , 159–162, 160f , 192

local, 124
parallel, 116, 125t, 126t
performance of, 119
results of timing, 122, 123t
run-times and efficiencies of, 192t
serial, 115

Member function, 182
implementation of, 186

memcpy (C library function), 268
Memory, 15, 16

cache, 191, 251
transactional, 52
virtual, 23–25

memset (C library function), 277
Merge, 135, 147
Mergesort, 148
Message, matching, 91–92
Message-passing, 242

locks in, 248–249



364 Index
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MPI Type free, 119
MPI Type indexed, 144
MPI Type vector, 143, 144
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n-body solvers

I/O, 280–281
MPI solvers, performance of, 297–299, 298t
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caveats, 225–227
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loop-carried dependences, 228–229
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performance of, 318–319, 319t
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and Pthreads, 209
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shared-memory system, 209, 210
structured block, 213
thread of execution, 213
trapezoidal rule

critical section, 218
Foster’s methodology, 216
Trap function, 218–220
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history of, 355
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parallel for directive

caveats, 225–227
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loop-carried dependences, 228–229

Parallel hardware, 73–74, 354
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interconnection networks, 35–42
MIMD systems, 32–35
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run-times of, 135t
Parallel programs, 1, 10–12
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scalability, 62
speedup and efficiency, 58–61, 59t, 60f
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running, 70
writing, 3–8, 11, 70

Parallel software, 74–75
caveats, 47–48
coordinating processes/threads, 48–49
distributed-memory programs, 53–56
programming hybrid systems, 56
shared-memory programs, 49–53

Parallel sorting algorithm, 127
Parallel systems, building, 3
Parallelization, 8, 9, 48, 61
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Partitioning data, 66
Partitioning loop iterations, 290
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results of timing, 122–125
scalability, 126–127
speedup and efficiency, 125–126
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Pop (stack), 303, 304
Posix Threads, see Pthreads
POSIX R©, 153, 174, 181, 354
Prefix sums, 142
Preprocessor, 121, 259
Pragmas, 210–211
Processes, operating systems, 17–18, 18f
Producer threads, 242
Producer-consumer synchronization, 171–176
Program, compilation and execution, 84–86
Program counter, 16
Progress, 9
Protect (critical section), 245, 353, 354
Protein folding, 2
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Pseudocode for Pthreads Terminated function, 312
pthread.h, 155, 156, 198
pthread attr t, 156
pthread barrier destroy, 203
pthread barrier init, 203
pthread barrier t, 203
pthread barrier wait, 203
pthread barrierattr t, 203
pthread cond broadcast, 180
pthread cond destroy, 181
pthread cond init, 181
pthread cond signal, 180
pthread cond t, 179, 180
pthread cond wait, 181, 311, 313, 317

implementing, 180
pthread condattr t, 181
pthread create, 156, 157
pthread join, 158
pthread mutex destroy, 169
PTHREAD MUTEX ERRORCHECK, 354
pthread mutex init, 169, 203
pthread mutex lock, 169, 170, 173, 181, 354
PTHREAD MUTEX RECURSIVE, 354
pthread mutex t, 169
pthread mutex trylock, 314, 337–338, 354
pthread mutex unlock, 169
pthread mutexattr t, 169
pthread rwlock destroy, 188
pthread rwlock init, 188
pthread rwlock rdlock, 187
pthread rwlock t, 188
pthread rwlock unlock, 187
pthread rwlock wrlock, 187
pthread rwlockattr t, 188
pthread t, 156, 157
Pthreads, 8–9, 212, 320, 327, 353, 354

barriers, 181
dynamic parallelization of tree search, 310–315
functions, syntax, 187
implementation of tree-search, pseudocode for, 309
matrix-vector multiplication, 192
and OpenMP, 337–338
parallelizing n-body solvers using, 289–290
program

error checking, 158–159
execution, 153–155
preliminaries, 155–156

read-write locks, 187–188

running, 157–158
for shared-memory programming, 209
splitting stack in parallel tree-search, 314–315
starting threads, 156–157, 159
static parallelization of tree search, 309–310
stopping threads, 158
termination of tree-search, 311–314
tree search programs
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run-times of, 315t

pthread t, 156–158
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Q
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Queues, 241–242

R
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Read access, 309
Read-lock function, 187
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implementations, 190
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linked list functions, 181–183
multithreaded linked list, 183–187
Pthreads, 187–188

Receive work function in MPI tree search, 334
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Recursive depth-first search, 302–303
Reduction clause, 221–224
Reduction operator, 223, 262
Reentrant, 197, 258
Registers, 16
Relinquish (lock, mutex), 51, 169, 181, 247, 337
Remote memory access, 55
Request (MPI nonblocking communication), 347
Ring architecture, 293
Ring pass, 292
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positions, 293, 294f

Row major order, 22
Run-time of parallel programs, 63
runtime schedule types, 239–240
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Scatter (MPI communication), 110–112
Scatter-gather (in vector processors), 31
schedule clause, 237–238
Scheduling loops

auto, 238, 261
dynamic and guided schedule types, 239
runtime schedule types, 239–240
schedule clause, 237–238
static schedule type, 238–239

Scope of variables, 220–221
sem destroy, 175n
sem open, 175
sem init, 175
sem post, 174, 178, 179, 199
sem t, 175
sem wait, 174, 178, 179, 199
semaphore.h, 199
Semaphores, 52, 171–179, 199, 353, 354

functions, syntax, 175
Sending messages, 243
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327, 331
Serial implementations

data structures for, 305–306
performance of, 306, 306t

Serial programs, 1, 66–68
parallelizing, 68–70
writing, 11

Serial systems, 71–73
Serialize, 58, 185, 189, 195
Shader functions, 32
Shared-memory, see also Distributed-memory

interconnects, 35–37
programs, 49–53, 151, 355

dynamic thread, 49
nondeterminism in, 49–52
static thread, 49
thread safety, 52

systems, 8, 9f , 12, 33–34, 83, 84f , 152f
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for programming, 151, 209–210
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SIMD systems, see Single instruction, multiple data
systems

Simultaneous multithreading (SMT), 29
Single instruction, multiple data (SIMD) systems, 29–30

graphics processing units, 32
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Single program, multiple data (SPMD) programs,
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Single-core system, 3
SISD system, see Single instruction, single data system
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Sorting algorithm

parallel, 127
serial, 127–129

Speculation, 27–28
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Split stack function in parallel tree search, 329
SPMD programs, see Single program, multiple data

programs
sprintf (C library function), 53
Stack, 303, 305, 309, 311, 314–315, 329–331
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Static parallelization of tree search using pthreads,

309–310
static storage class in C, 197, 258
static schedule type, 238–239
Static threads, 49
status p argument, 92–93
Store (as in load/store), 31
Strided memory access, 31
strtok function, 196, 197, 258, 259
strtok r (C library function), 197, 258
strtol function, 155, 213
Structured block, 213
Swap space, 24
Switched interconnects, 35
Synchronization, 7

T
Tag (MPI message tag), 90, 91
Task (Foster’s methodology), 81
Task-parallelism, 6–7, 48
Terminated function in parallel tree search, 311–314,

317, 318, 327
Termination detection, 244
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Thread-level parallelism (TLP), 28
Threads, 18, 18f , 48–49, 151

of control, 152–153
dynamic, 49
of execution, 213
function, 196

for computing π , 163
running, 157–158

incorrect programs, 198
strtok function, 258, 259
Tokenize function, 257

starting, 156–157
approaches to, 159

static, 49
stopping, 158

Thread-safety, 52–53, 195–198
timer.h, 121, 138
Timing parallel programs, 64
TLP, see Thread-level parallelism
Tokenize function, 257
Toroidal mesh, 37, 74
Tour (traveling salesperson problem), 299
Toverhead , 59, 79, 123
Tparallel, 59, 76, 79, 123, 170, 253
Transactional memory, 52
Translation programs, 3
Translation-lookaside buffer (TLB), 25
Trap function, 218–220

in trapezoidal rule MPI, 99f
Trapezoidal rule, 94–95, 95f

critical section, 218
Foster’s methodology, 216
MPI, first version of, 98f
parallelizing, 96–97
tasks and communications for, 96f

Travelling salesperson problem, 299
Tree search

depth-first search, 301
dynamic partitioning

checking for and receiving new best tours,
333–334

distributed termination detection, 331–333,
332t

in Pthreads and in OpenMP, 327
sending requests, 333
splitting stack, 329–331

directed graph, 300
MPI, 319–326, 327–333

performance of, 334–335, 334t
nonrecursive depth-first search, 303–305
parallelizing

best tour data structure, 307–308
dynamic mapping of tasks, 308
mapping details, 307

in Pthreads and OpenMP, 334, 337
recursive depth-first search, 302–303
serial implementations

data structures for, 305–306
performance of, 306, 306t

static partitioning
maintaining best tour, 321–325
printing best tour, 325–326
in Ptherads and OpernMP, 319–321
unreceived messages, 326

Tree-structured broadcast, 108f
Tree-structured communication, 102–103
Tserial, 58, 59, 76, 79, 192
Typographical conventions, 11

U
Uniform memory access (UMA) system, 34, 34f
Unblock, 179, 180
Unlock, 51, 178, 190
Unpack, 145, 334
Unsafe communication in MPI, 132, 139, 140
Update best tour in parallel tree search, 316

pseudocode for, 310

V
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Variable, condition, 179–181, 199
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parallel implementation of, 110
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Virtual address, 24, 24t
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modifications to, 18
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volatile storage class (continued)
instruction-level parallelism, 25–28
virtual memory, 23–25

von Neumann bottleneck, 16–17

W
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Wildcard arguments, 92

Windows, 239, 240
Wrapper script for C compiler, 85
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Write-through cache, 20, 44
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